

Units and Dimensions

1.	In a vernier callipers, one	e main scale division is <i>x cn</i>	n and n division of the vern	hier scale coincide with $(n -$
		cale. The least count (in <i>cn</i>		(1
	a) $\left(\frac{n-1}{n}\right)x$	b) $\frac{nx}{(n-1)}$	c) $\frac{x}{n}$	$d)\frac{x}{(n-1)}$
2.	If the speed of light (c), a	cceleration due to gravity ((g) and pressure (p) are ta	ken as the fundamental
	_	nsion of gravitational cons	<mark>tant i</mark> s	
	a) $c^2 g^0 p^{-2}$	b) $c^0 g^2 p^{-1}$	c) cg^3p^{-2}	d) $c^{-1}g^0p^{-1}$
3.	Dimension of <i>R</i> is	b) $ML^2T^{-3}A^{-2}$		
	a) ML^2T^{-1}	b) $ML^2T^{-3}A^{-2}$	c) $ML^{-1}T^{-2}$	d) None of these
4.	"Pascal-Second" has dime	ension of		
	a) Force		b) Energy	
	c) Pressure		d) Coefficient of viscosity	7
5.		tity obtained by the line in		
	a) NC ⁻¹	b) Vm ⁻¹	c) JC ⁻¹	d) $C^2N^{-1}m^{-2}$
6.		ic potent <mark>ial are</mark>		
	a) $[ML^2T^{-2}Q^{-1}]$	b) $[MLT^{-2}Q^{-1}]$	c) $[ML^2T^{-1}Q]$	d) $[ML^2T^{-2}Q]$
7.	The velocity v (in cm/se	c) of a particle is given in te	erms of time $t(in sec)$ by th	e relation $v = at + \frac{b}{t+c}$; the
	dimensions of a , b and c			ίτι
	a) $a = L^2$, $b = T$, $c = LT^2$		b) $a = LT^2, b = LT, c = L$	
	c) $a = LT^2, b = L, c = T$		d) $a = L, b = LT, c = T^2$	
8.	A student measures the d	listance traversed in free fa	ll of a body, initially at rest	in each time. He uses this
	data to estimate g , the ac	celeration due to gravity. If	the maximum percentage	errors in measurement of
	the distance and the time	e are e_1 and e_2 respectively,	the percentage error in th	e estimation of g is
	a) $e_2 - e_1$	b) $e_1 + 2e_2$	c) $e_1 + e_2$	d) $e_1 - 2e_2$
9.	Which of the following is	the smallest unit		
	a) Millimetre	b) <i>Angstrom</i>	c) Fermi	d) Metre
10.	Which relation is wrong			
	a) $1 \ calorie = 4.18 \ joul$	e	b) $1 \text{ Å} = 10^{-10} m$	
	c) $1 MeV = 1.6 \times 10^{-13}$	joule	d) 1 newton = $10^{-5} dyr$	ie
11.	The resistance $R = \frac{V}{i}$ wh	ere $V = 100 \pm 5 $ volts and	$i = 10 \pm 0.2$ amperes. Wh	at is the total error in R
	a) 5%	b) 7%	c) 5.2%	d) $\frac{5}{2}$ %

12. A vernier calipers has 1 mm marks on the main scale. It has 20 equal divisions on the Vernier scale which

c) 0.1 mm

d) 0.2 mm

match with 16 main scale divisions. For this Vernier callipers, the least count is

b) 0.05 mm

a) 0.02 mm

13.	Given $X = (Gh/c^3)^{1/2}$, where G , h and c are gravitational constant, Planck's constant and the velocity of				
	light respectively. Dimens	sions of X are the same as t	hose of		
	a) Mass	b) Time	c) Length	d) Acceleration	
14.	Number of base SI unit is				
	a) 4	b) 7	c) 3	d) 5	
15.	The dimensions of permit	ttivity $arepsilon_0$ are			
	a) $A^2T^2M^{-1}L^{-3}$	b) $A^2T^4M^{-1}L^{-3}$	c) $A^{-2}T^{-4}ML^3$	d) $A^2T^{-4}M^{-1}L^{-3}$	
16.			cover 1 mm on its main sca	le. The total number of	
	divisions on the circular s	scale is 50. Further, it is fou	nd that the screw gauge ha	s a zero error of -0.03 mm.	
	While measuring the diar	neter of a thin wire, a stude	ent notes the main scale rea	nding of 3 mm and the	
	number of circular scale of	divisions in line with the m	ain scale as 35. The diamet	er of the wire is	
	a) 3.32 mm	b) 3.73 mm	c) 3.67 mm	d) 3.38 mm	
17.	If $x = a - b$, then the max	ximum percentage error in	the measurement of x will	be	
	a) $\left(\frac{\Delta a + \Delta b}{a - b}\right) \times 100\%$		b) $\left(\frac{\Delta a}{a} - \frac{\Delta b}{b}\right) \times 100\%$		
	(u b)		$\langle u \rangle$		
	c) $\left(\frac{\Delta a}{a-a} + \frac{\Delta b}{a-b}\right) \times 100$	1%	d) $\left(\frac{\Delta a}{a-a} - \frac{\Delta b}{a-b}\right) \times 100$	%	
10	$\langle u \ u \ u \ D \rangle$				
18.		ement of radius of a sphere	e is 2%, then the error in th	e determination of volume	
	of the sphere will be	L) 20/	-) 40/	J) (0/	
10	a) 8%		c) 4%	d) 6%	
19.				ed a dimensional constant?	
	a) Acceleration due to gra		b) Surface tension of water		
20	c) Weight of a standard k	-	d) The velocity of light in		
20.			$\frac{dR_2}{dR_2} = (10 \pm 0.2)k\Omega$. The p	bercentage error in the	
	a) 5.125%	en they are connected in pa		d) 7%	
21.	a) 5.12570	b) 2%	c) 10.125%	u) / 70	
21.	The dimensions of $\frac{a}{b}$ in th	e equation $P = \frac{a}{bx}$, where	e P is pressure, x is distance c) ML^3T^{-1}	e and t is time, are	
	a) MT^{-2}	b) M^2LT^{-3}	c) ML^3T^{-1}	d) LT^{-3}	
22.	0 0 0	0 0	d to measure the diameter	of a wire.	
	Main scale reading: 0 mm				
	Circular scale reading: 52				
	Given that 1 mm on main				
	100 divisions of the circu				
	The diameter of wire from		-) 0.00 	J) 0 F2	
22	a) 0.052 cm	b) 0.026 cm	c) 0.005 cm	d) 0.52 cm	
23.			d as $\left(P + \frac{a}{V^2}\right) = \frac{R\theta}{V}$. Where		
			constants? The dimension		
	a) $[ML^5T^{-2}]$	b) $[M^{-1}L^5T^{-2}]$	c) $[ML^{-1}T^{-2}]$	d) $[ML^{-5}T^{-2}]$	
24.	-		od having least count 0.1 <i>cn</i>		
			_	n that length is 5.0 cm. and	
		_	ted value of the volume wil		
	a) 1%	b) 2%	c) 3%	d) 4%	
25.	If $E = \text{energy}$, $G = \text{gravita}$	ational constant, $I = \text{impuls}$	se and $M = $ mass, then dim	ensions of $\frac{GIM^2}{E^2}$ are same as	
	that of				
	a) Time	b) Mass	c) Length	d) Force	

26.	The least count of a stop	watch is 0.2 s. The time of 2	20 oscillations of a pendulu	ım is measured to be 25 s.
	. 0	he measurement of time w	ill be	
	a) 8%	b) 1.8%	c) 0.8%	d) 0.1%
27.				en the dimensional formula
	o .	terms of v , A and F would b) Fv^3A^{-2}		d) $F^2v^2A^{-1}$
28.	a) $FA^{-1}v$,		,
20.			$\operatorname{ce} x$ from a fixed origin as δ	$U = \left(\frac{A\sqrt{X}}{x+B}\right)$; where A and B
	are constants. The dimen		\[\sigma_2/2\cdot 2/2\m_2\]	1) [sec 7/2m=2]
20		b) [ML ² T ⁻²]		
29.			_	ment of M , L and T are α , β
	•	naximum percentage error	- · · · ·	d) None of these
	a) $a\alpha + b\beta + c\gamma$	b) $a\alpha + b\beta - c\gamma$	c) $\frac{\alpha}{\alpha} + \frac{\beta}{\beta} + \frac{\beta}{\gamma}$	d) None of these
30.		nensional formula of whicl		quantities?
	a) Energy	b) pressure	c) Torque	d) Pressure gradient
31.		vity in terms of M, L, T and	-	_
	a) $ML^3T^{-1}Q^{-2}$,	c) $ML^2T^{-1}Q^{-1}$	d) $MLT^{-1}Q^{-1}$
32.	Which does not have the			15.7
22	a) Watt-sec	b) Kilowatt-hour		d) J-sec
33.	consideration is	24 mm. Then its area of cro	ss section by taking signing	cant figures into
		b) 0.2 mm ²	c) 0.18 mm ²	d) 0.180 mm ²
34.	The expression $[ML^{-1}T^{-1}]$		C) 0.10 mm	u) 0.100 mm
0 11	a) Momentum	1.00.000000	b) Force	
	c) Pressure		d) Coefficient of viscosity	7
			a) docimerent of viscosity	
35.	A thin copper wire of leng	gth <i>l metre</i> increases i <mark>n l</mark> er		
35.		gth <i>l metre</i> increases in ler rea when a square copper s	ngth by 2% when heated th	rough $10^{\circ}C$. What is the
	percentage increase in ar	rea when a square copper s b) 8%	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16%	eated through 10°C. What is the distance of the above
	percentage increase in ar a) 4% R and L represent respec	rea when a square copper s b) 8%	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16%	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$
	percentage increase in ar	rea when a square copper s b) 8%	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16%	arough 10°C. What is the eated through 10°C d) None of the above lowing combinations has the
	percentage increase in ar a) 4% R and L represent respec dimensions of frequency	ea when a square copper s b) 8% tively re <mark>sistance and self ir</mark>	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16% aductance, which of the follo	arough 10°C. What is the eated through 10°C d) None of the above lowing combinations has the
	percentage increase in ar a) 4% R and L represent respec	rea when a square copper s b) 8%	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16%	eated through 10°C. What is the distance of the above
	percentage increase in ar a) 4% R and L represent respec dimensions of frequency	ea when a square copper s b) 8% tively resistance and self in b) $\frac{L}{R}$	ngth by 2% when heated the heet of length <i>l metre</i> is he c) 16% aductance, which of the follo	arough 10°C. What is the eated through 10°C d) None of the above lowing combinations has the
36. 37.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$	rea when a square copper s b) 8% tively resistance and self in b) $\frac{L}{R}$ red by b) $Debye$	ngth by 2% when heated the heet of length l metre is he c) 16% aductance, which of the following $\left(\frac{R}{L}\right)$ c) $\left(\frac{R}{L}\right)$	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) Light year
36.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$	rea when a square copper s b) 8% tively resistance and self in b) $\frac{L}{R}$ red by	ngth by 2% when heated the heet of length l metre is he c) 16% aductance, which of the following $\left(\frac{R}{L}\right)$ c) $\left(\frac{R}{L}\right)$	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) Light year
36. 37.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, b	rea when a square copper s b) 8% tively resistance and self in b) $\frac{L}{R}$ red by b) $Debye$	ingth by 2% when heated the heet of length l metre is he c) 16% inductance, which of the following $\frac{R}{L}$ c) $\frac{R}{L}$	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above dowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x = \frac{ab^2}{c^3}$. The
36.37.38.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $\frac{Debye}{a}$ asure quantities a, b and c . c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$	ingth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre is heated l metre. The following l metron l m	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$
36. 37.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $\frac{Debye}{a}$ asure quantities a, b and c . c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$	ingth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre is heated l metre. The following l metron l m	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The rage error in x can be
36.37.38.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in $a, b,$ a) $\pm 1\%$ The time dependence of a time. Then constant α is	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $\frac{Debye}{a}$ asure quantities a, b and c . c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$	nigth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre is heated l metre. Which of the following l considering l considering l metro. Then l is calculated from the constant l metro. The percent l considering l metro. The percent l metro. The percent l considering l metro. The percent	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$
36.37.38.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $\frac{Debye}{a}$ asure quantities a, b and c . c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$	nigth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre is heated l metre. Which of the following constant l metron. Then l is calculated from the respectively. The percent l constant l metron l	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$
36.37.38.39.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ as	nigth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. The heated l metre is heated l metre l metre. The following l metron l me	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above dowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x = \frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$ ere α is a constant and t is
36.37.38.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P The percentage errors in	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $Debye$ asure quantities a, b and c . c are $\pm 1\%, \pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$ a physical quantity P is given the measurement of length	ngth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. Which of the following constant l metron. Then l is calculated from the respectively. The percent l constant l metron l	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above dowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$ ere α is a constant and t is
36.37.38.39.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in $a, b,$ a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P The percentage errors in 2% respectively. Then the	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $Debye$ asure quantities a, b and c . c are $\pm 1\%, \pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$ a physical quantity P is give the measurement of lengther maximum error in the measurement error in the measure	ngth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. The heated l metre is heated l metre is heated l metre. The following l metron. Then l is calculated from the respectively. The percent l conclusions l metron	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x = \frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$ ere α is a constant and t is
36.37.38.39.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P The percentage errors in 2% respectively. Then the	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $Debye$ asure quantities a, b and c . c are $\pm 1\%, \pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$ a physical quantity P is give the measurement of length e maximum error in the measurement b) 3%	ngth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. Which of the following constant l metron. Then l is calculated from the respectively. The percent l constant l metron l	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above dowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$ ere α is a constant and t is
36.37.38.40.	percentage increase in ar a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measur a) $Fermi$ In an experiment, we mean percentage errors in $a, b,$ a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P The percentage errors in 2% respectively. Then the	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $Debye$ asure quantities a, b and c . c are $\pm 1\%, \pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$ a physical quantity P is give the measurement of length e maximum error in the measurement b) 3%	ngth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. The heated l metre is heated l metre is heated l metre. The following l metron. Then l is calculated from the respectively. The percent l conclusions l metron	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x = \frac{ab^2}{c^3}$. The tage error in x can be d) $\pm 13\%$ ere α is a constant and t is
36.37.38.40.	percentage increase in area a) 4% R and L represent respect dimensions of frequency a) $\frac{R}{L}$ Length cannot be measure a) $Fermi$ In an experiment, we measure percentage errors in a, b, a a) $\pm 1\%$ The time dependence of a time. Then constant α is a) Dimensionless c) Dimensionless of P The percentage errors in 2% respectively. Then the a) 8% One femtometer is equivalent.	tively resistance and self in $\frac{L}{R}$ b) $\frac{L}{R}$ red by b) $Debye$ asure quantities a, b and c . c are $\pm 1\%$, $\pm 3\%$, and $\pm 2\%$ b) $\pm 4\%$ a physical quantity P is given the measurement of length e maximum error in the measurement to b) 3% alent to b) 10^{-15} m	ngth by 2% when heated the heet of length l metre is heated l metre is heated l metre is heated l metre. So the heated l metre is heated l metre. Which of the following l metro. Then l is calculated from the respectively. The percent l consistency l metro. The l metro	arough $10^{\circ}C$. What is the eated through $10^{\circ}C$ d) None of the above lowing combinations has the d) $\sqrt{\frac{L}{R}}$ d) $Light\ year$ the formula $x=\frac{ab^2}{c^3}$. The rage error in x can be d) $\pm 13\%$ ere α is a constant and t is alle pendulum are 1% and due to gravity is d) 5%

43. In the relation $x = \cos(\omega t + kx)$, the dimensions of ω are				
	a) [M ⁰ LT]	b) $[M^0L^{-1}T^0]$	c) $[M^0L^0T^{-1}]$	d) $[M^0LT^{-1}]$
44.	$newton-second$ is the ι	ınit of		
	a) Velocity	b) Angular momentum	c) Momentum	d) Energy
45.	The initial temperature o	f a liquid is $(80.0 \pm 0.1)^{0}$ C.	After it has been cooled, its	s temperature is
	$(10.0 \pm 0.1)^{0}$ C. The fall in	n temperature in degree ce	ntigrade is	
	a) 70.0	b) 70.0± 0.3	c) 70.0 ± 0.2	d) 70.0 ± 0.1
46.	If there is a positive error	of 50% in the measureme	nt of speed of a body, then t	the error in the
	measurement of kinetic e	energy is		
	a) 25%	b) 50%	c) 100%	d) 125%
47.	If the value of the resistar	nce is 10.845Ω and the valu	e of the current is 3.23 A, t	hen the potential difference
	is 35.02935 V. its value in	n correct significant figures	would be	
	a) 35 V	b) 35.0 V	c) 35.03 V	d) 35.029 V
48.	Which of the following se	ts of quantities have same	dimensional formula?	
	a) Frequency, angular fre	quency and angular mome	ntum	
	b) Surface tension, stress	and spring constant		
	c) Acceleration, moments	um and retardation		
	d) Work, energy and torq			
49.	The random error in the	arithmetic mean of 100 obs	<mark>servat</mark> ions is <i>x</i> ; then randon	n error in the arithmetic
	mean of 4000 observation	ns would be		
	a) 4 <i>x</i>	b) 14x NEWTON'S	APPLE	d) 12x

1 **(c)**

One main scale division, 1 M. S. D. = x cm

One vernier scale division , 1 V. S. D. = $\frac{(n-1)x}{n}$

Least count = 1 M. S. D. -1 V. S. D.

$$=\frac{nx-nx+x}{n}=\frac{x}{n}\ cm$$

2 **(b**

Let $[G] \propto c^x g^y p^z$

By substituting the following dimensions:

$$[G] = [M^{-1}L^3T^{-2}], [c] = [LT^{-1}], [g] = [LT^{-2}]$$

$$[p] = [ML^{-1}T^{-2}]$$

and by comparing the powers of both sides

we can get x = 0, y = 2, z = -1

$$\therefore [G] \propto c^0 g^2 p^{-1}$$

3 **(b**)

$$R = \frac{V}{I} = \left[\frac{ML^2T^{-3}A^{-1}}{A} \right] = [ML^2T^{-3}A^{-2}]$$

4 (d)

 $NSm^{-2} = Nm^{-2} \times S = \text{Pascal-second}$

5 (c

The unit of physical quantity obtained by the line integral of electric field is JC^{-1} .

6 **(a**

$$V = \frac{W}{Q} = [ML^2T^{-2}Q^{-1}]$$

7 (c)

From the principle of dimensional homogeneity

$$[v] = [at] \Rightarrow [a] = [LT^{-2}]$$
. Similarly $[b] = [L]$ and $[c] = [T]$

8 **(b)**

 $\ln g = \ln h - 2 \ln t$

$$\left(\frac{\Delta g}{g} \times 100\right)_{\text{max}} = \frac{\Delta h}{h} \times 100 + 2\frac{\Delta t}{t} \times 100$$

 $1 \text{ fermi} = 10^{-15} \text{ metre}$

 $1 newton = 10^{-5} dyne$

$$\therefore \left(\frac{\Delta R}{R} \times 100\right)_{\text{max}} = \frac{\Delta V}{V} \times 100 + \frac{\Delta I}{I} \times 100$$
$$= \frac{5}{100} \times 100 + \frac{0.2}{10} \times 100 = (5+2)\% = 7\%$$

12 (d)

20 VSD = 16 MSD

$$1 VSD = 0.8 MSD$$

Main scale

Least count = MSD - VSD

= 1 mm - 0.8 mm = 0.2 mm

13 **(c)**

$$[X] = \left[\frac{M^{-1}L^3T^{-2} \times ML^2T^{-1}}{L^3T^{-3}} \right]^{-1/2} = [L]$$

14 (b

15 **(b)**

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$

$$\Rightarrow \ \varepsilon_0 = \frac{|q_1||q_2|}{|F||r^2|} = \frac{[A^2T^2]}{[MLT^{-2}][L^2]} = [A^2T^4M^{-1}L^{-3}]$$

16 **(d)**

Diameter = Main scale reading

+ Circular scale reading × LC + Zero error

$$= 3 + 35 \times \frac{1}{2 \times 50} + 0.03 = 3.38 \text{ mm}$$

17 (a)

Maximum absolute error is $\Delta a + \Delta b$. Now work out the relative error ad finally the percentage error.

As
$$v = \frac{4}{3} \pi r^3$$

$$\frac{dv}{v} = 3\left(\frac{dr}{r}\right)$$

 \therefore Percentage error in determination of volume = 3

(Percentage error in measurement of radius) = 3(2%) = 6%

19 **(d)**

$$\begin{split} R_{\text{parallel}} &= \frac{R_1 R_2}{(R_1 + R_2)} \\ \Rightarrow \frac{\Delta R_p}{R_p} &= \frac{\Delta R_1}{R_1} + \frac{\Delta R_2}{R_2} + \frac{\Delta (R_1 + R_2)}{R_1 + R_2} \\ \Rightarrow \frac{\Delta R_p}{R_p} &= \frac{0.3}{6} + \frac{0.2}{10} + \frac{(0.3 + 0.2)}{10 + 6} \\ &= 0.05 + 0.02 + 0.03125 = 0.10125 \\ \therefore \frac{\Delta R_p}{R_p} \times 100 = 10.125 \text{ or } 10.125\% \end{split}$$

21 (a)

$$[a] = [T^2] \text{ and } [b] = \frac{[a-t^2]}{[P][X]} = \frac{T^2}{[ML^{-1}T^{-2}][L]}$$

 $\Rightarrow [b] = [M^{-1}T^4]$
 $So\left[\frac{a}{b}\right] = \frac{[T^2]}{[M^{-1}T^4]} = [MT^{-2}]$

22 **(a)**

Diameter of wire,

$$d = MSR + CSR \times LC$$

= $0 + 52 \times \frac{1}{100}$
= $0.52 \text{ mm} = 0.052 \text{ cm}$.

23 (a)

By the principle of dimensional homogenity $[P] = \left[\frac{a}{V^2}\right] \Rightarrow [a] = [P] \times [V^2] = [ML^{-1}T^{-2}][L^6]$ = $[ML^5T^{-2}]$

24 **(c)**

Volume of cylinder $V = \pi r^2 l$ Percentage error in volume

$$\frac{\Delta V}{V} \times 100 = \frac{2\Delta r}{r} \times 100 + \frac{\Delta l}{l} \times 100$$
$$= \left(2 \times \frac{0.01}{2.0} \times 100 + \frac{0.1}{5.0} \times 100\right) = (1+2)\%$$
$$= 3\%$$

25 **(a)**

Dimensions of $E = [ML^2T^{-2}]$

Dimensions of $G = [M^{-1}L^3T^{-2}]$

Dimensions of $I = [MLT^{-1}]$

And dimension of M = [M]

∴ Dimensions of
$$\frac{GIM^2}{E^2}$$

$$= \frac{[M^{-1}L^3T^{-2}][MLT^{-1}][M^2]}{[ML^2T^{-2}]^2}$$

$$= [T]$$

$$= Dimensions of time$$

$$\begin{array}{c}
26 \quad \text{(c)} \\
\frac{0.2}{25} \times 100 = 0.8
\end{array}$$

27 **(b)**

$$L \propto v^x A^y F^z \Rightarrow L = k v^x A^y F^z$$

Putting the dimensions in the above relation $[ML^2T^{-1}] = k[LT^{-1}]^x[LT^{-2}]^y[MLT^{-2}]^z$ $\Rightarrow [ML^2T^{-2}] = k[M^zL^{x+y+z}T^{-x-2y-2z}]$

Comparing the powers of M, L and T

$$z = 1$$
 ...(i)
 $x + y + z = 2$...(ii)
 $-x - 2y - 2z = -1$...(iii)

On solving (i), (ii) and (iii) x = 3, y = -2, z = 1So dimension of L in terms of v, A and f

$$[L] = [Fv^3A^{-2}]$$

28 **(d)**

Given,
$$U = \frac{A\sqrt{x}}{x+B}$$
 ... (i)

Dimensions of U = dimensions of potential energy

$$= [ML^2T^{-2}]$$

From Eq. (i),

Dimensions of $B = \text{dimensions of } x = [M^0LT^0]$

∴ Dimensions of A

$$= \frac{\text{dimensions of } U \times \text{dimensions of } (x + B)}{\text{dimension of } \sqrt{x}}$$
$$= \frac{[ML^2T^{-2}][M^0LT^0]}{[M^0L^{1/2}T^0]}$$
$$= [ML^{5/2}T^{-2}]$$

Hence, dimensions of AB

$$= [ML^{5/2}T^{-2}][M^0LT^0]$$
$$= [ML^{7/2}T^{-2}]$$

29 **(a)**

Percentage error in $X = a\alpha + b\beta + c\gamma$

30 **(d)**

$$[ML^{-2}T^{-2}] = \frac{[MLT^{-2}]}{[L][L^{2}]}$$

$$= \frac{Force}{distance \times area} = \frac{pressure}{distance}$$

$$= pressure gradient.$$

31 **(a)**

 $\rho = \frac{RA}{l} i.e. \text{ dimension of resistivity is}$ $[ML^3T^{-1}Q^{-2}]$

32 **(d)**

Joule-sec is the unit of angular momentum where as other units are of energy

33 **(c)**

Area of cross section = $\frac{22}{7} \times 0.24 \times 0.24 \text{mm}^2 = 0.18 \text{mm}^2$

34 **(d)**

Coefficient of viscosity =
$$\frac{F \times r}{A \times v} = \frac{[\text{MLT}^{-2}] \times [\text{L}]}{[\text{L}^2] \times [\text{LT}^{-1}]}$$

= $[\text{ML}^{-1}\text{T}^{-1}]$

35 **(a)**

Since percentage increase in length =2%Hence, percentage increase in area if square sheet $=2 \times 2\% = 4\%$

36 **(a)**

$$\frac{R}{L} = \frac{V/I}{V \times T/I} = \frac{1}{T} = \text{Frequency}$$

37 **(b**)

38 (d)

Percentage error in $x = 1\% + 2 \times 3\% + 3 \times 2\% = 13\%$.

The sign \pm has been used because the words 'maximum percentage error' have not been used. Note percentage error is $\pm \frac{\Delta A}{A} \times 100$

Maximum percentage error is $\frac{\Delta A}{A} \times 100$

39 **(b**)

Here αt^2 is a dimensionless. Therefore, $\alpha = \frac{1}{t^2}$ and has the dimension of $[T^{-2}]$.

40 **(d)**

Time period of a simple pendulum is

$$T = 2\pi \sqrt{\frac{L}{g}} \Rightarrow g = \frac{4\pi^2 L}{T^2}$$
$$\therefore \frac{\Delta g}{g} \times 100 = \left(\frac{\Delta L}{L} + 2\frac{\Delta T}{T}\right) \times 100 = 1\% + 2 \times 2\%$$
$$= 5\%$$

41 **(b)**

42 **(b)**

By Stefan's law,

$$E = \sigma T^4$$

Where σ is the Stefan's constant

$$\sigma = \frac{E}{T^4}$$

$$[\sigma] = \frac{[E]}{T^4} = \frac{[ML^2T^{-2}]}{[K^4]}$$

$$= [ML^2T^{-2} K^{-4}]$$

43 **(c)**

Given,
$$x = \cos(\omega t + kx)$$

Here, $(\omega t + kx)$ is an angle so the dimension of

$$(\omega t + kx) = [\mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0]$$

Or dimensions of $\omega t = [M^0 L^0 T^0]$

Or dimensions of
$$\omega = \frac{[M^0L^0T^0]}{[T]}$$

$$Or = [M^0L^0T^{-1}]$$

44 (c)

Impulse = change in momentum = $F \times t$ So the unit of momentum will be equal to *Newton-sec*

45 **(c)**

When quantities are subtracted, their maximum absolute errors are added up.

46 (d)

Kinetic energy,
$$E = \frac{1}{2}mv^2$$

$$\therefore \frac{\Delta E}{E} \times 100 = \frac{v'^2 - v^2}{v^2} \times 100$$

$$= [(1.5)^2 - 1] \times 100$$

$$= 125\%$$

47 **(b)**

We have to retain three significant figures in the result.

48 **(d**)

The dimensional formula of

$$Work = Energy = Torque = [ML^2T^{-2}]$$

49 **(b)**

Motion on a straight line

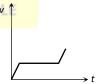
A car accelerates from rest at a constant rate *a* for some time, after which it decelerates at a constant rate 1. β and comes to rest. If the total time elapsed is t, then the maximum velocity acquired by the car is

a)
$$\left(\frac{\alpha t + \beta^2}{a\beta}\right) t$$

b)
$$\left(\frac{\alpha^2 - \beta^2}{a\beta}\right)t$$

c)
$$\frac{(\alpha + \beta)t}{\alpha\beta}$$

d)
$$\frac{\alpha\beta t}{\alpha + \beta}$$


- A police jeep is chasing with velocity of $45 \, km/h$ a thief in another jeep moving with velocity $153 \, km/h$. Police fires a bullet with muzzle velocity of 180 m/s. The velocity with which it will strike the car of the thief is
 - a) $150 \, m/s$
- b) 27 m/s c) 450 m/s
- d) $250 \, m/s$
- 3. Acceleration-time graph of a body is shown. The corresponding velocity-time graph of the same body is

a) v

A person travels along a straight road for the first half time with a velocity v_1 and the next half time with a 4. velocity v_2

The mean velocity V of the man is

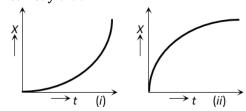
a)
$$\frac{2}{V} = \frac{1}{v_1} + \frac{1}{v_2}$$
 b) $V = \frac{v_1 + v_2}{2}$ c) $V = \sqrt{v_1 v_2}$

b)
$$V = \frac{v_1 + v_2}{2}$$

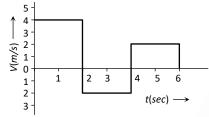
c)
$$V = \sqrt{v_1 v_2}$$

$$d) V = \sqrt{\frac{v_1}{v_2}}$$

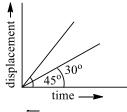
- The displacement of a particle is given by $y = a + bt + ct^2 dt^4$. The initial velocity and acceleration are 5. respectively
 - a) b, -4d
- b) -b, 2c
- c) b, 2c


- d) 2c, -4d
- 6. The motion of a particle is described by the equation u = at. The distance travelled by the particle in the first 4 seconds
 - a) 4a

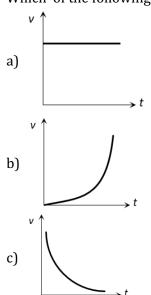
b) 12a

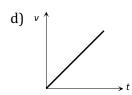

c) 6a

d) 8a


7. Figures (i) and (ii) below show the displacement-time graphs of two particles moving along the x-axis. We can say that

- a) Both the particles are having a uniformly accelerated motion
- b) Both the particles are having a uniformly retarded motion
- c) Particle (i) is having a uniformly accelerated motion while particle (ii) is having a uniformly retarded motion
- d) Particle (i) is having a uniformly retarded motion while particle (ii) is having a uniformly accelerated motion
- 8. The velocity-time graph of a body moving in a straight line is shown in the figure. The displacement and distance travelled by the body in 6 *sec* are respectively

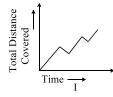

- a) 8 m, 16 m
- b) 16 m, 8 m
- c) 16 m, 16 m
- d) 8 m, 8 m
- 9. The displacement-time graphs of two moving particles make angles of 30° and 45° with the x-axis. The ratio of the two velocities is

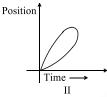


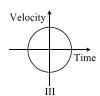
- a) $\sqrt{3}:1$
- b) 1:1

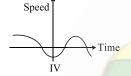
c) 1:2

- d) 1: $\sqrt{3}$
- 10. Which of the following velocity-time graphs represent uniform motion

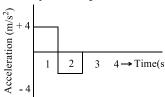





- 11. A balloon rises from rest with a constant acceleration g/8. A stone is released from it when it has risen to height *h*. The time taken by the stone to reach the ground is


c) $\sqrt{\frac{2h}{g}}$

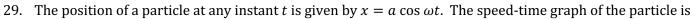
- d) $\sqrt{\frac{g}{h}}$
- A train accelerates from rest at a constant rate α for distance x_1 and time t_1 . After that it retards to rest at constant rate β for distance x_2 and time t_2 . Then it is found that
 - a) $\frac{x_1}{x_2} = \frac{\alpha}{\beta} = \frac{t_1}{t_2}$
- $b) \frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}$
- c) $\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_2}{t_1}$ d) $\frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_2}{t_1}$
- 13. Which of the following graphs can not possibly represent one dimensional motion of a particle

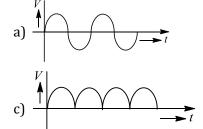

- a) I and II
- b) II and III
- c) II and IV
- d) All four
- 14. A stone is dropped from a height h. Simultaneously, another stone is thrown up from the ground which reaches a height 4 h. The two stones cross other after time

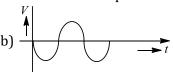
- 15. The numerical ratio of average velocity to average speed is
 - a) Always less than one

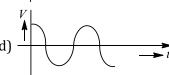
b) Always equal to one

c) Always more than one


- d) Equal to or less than one
- 16. A particle starts from rest at t = 0 and moves in a straight line with an acceleration as shown below. The velocity of the particle at t = 3s is

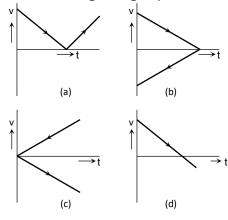



- a) $2 ms^{-1}$
- b) $4 ms^{-1}$
- c) $6 ms^{-1}$
- d) $8 ms^{-1}$
- 17. Two particles held at different heights a and b above the ground are allowed to fall from rest. The ratio of their velocities on reaching the ground is


- b) \sqrt{a} : \sqrt{b}
- c) $a^2:b^2$
- d) $a^3: b^3$
- 18. If the velocity of a particle is $(10 + 2t^2)m/s$, then the average acceleration of the particle between 2s and 5*s* is
 - a) $2m/s^2$
- b) $4m/s^{2}$
- c) $12m/s^2$
- d) $14m/s^2$

19.	•	t at half of its maximum he	eight in t second. The total eight while returning (in sec	cond) is
	a) $\sqrt{2} t$	b) $\left(1 + \frac{1}{\sqrt{2}}\right)t$	c) $\frac{3t}{2}$	d) $\frac{t}{\sqrt{2}}$
20.	S2 : In general, speed is g	ath length divided by time reater than the magnitude		ro sneed
	-	rage velocity is the average	-	10 5p 00 0
21.	a) S2 and S3 A bird flies for 4 s with a distance of	b) S1 and S4 velocity of $ t - 2 m/s$ in a s	c) S1, S3 and S4 straight line, where t is time	d) All four statements e in seconds. It covers a
	a) 2 m	b) 4 m	c) 6 m	d) 8 m
22.	The acceleration ' a ' in m/a	s^2 of a particle is given by	$a = 3t^2 + 2t + 2$ where t is e velocity at the end of 2 se c) $27 m/s$	s the time. If the particle
23.	Water drops fall from a ta floor when the fifth drop	ip on the floor 5m below at	regular intervals of time, the which the third drop will be	he first drop striking the
24.	A cyclist starts from the c cycles along the circumfe	entreO of a circular park of rence and returns to the po	f radius 1 km, reaches the e bint 0 as shown in figure. If cyclist (in metre and kilome	dge <i>P</i> of the park, then the round trip takes 10
	P	NEWTON'S	APPLE	
	a) 0, 1	b) $\frac{\pi + 4}{2}$, 0	c) 214, $\frac{\pi + 4}{2}$	d) 0, 21.4
25.	Two trains each $50 m lon of crossing is$	4	direction with velocity 10	m/s and 15 m/s . The time
	a) 2s	b) 4s	c) $2\sqrt{3}s$	d) $4\sqrt{3} s$
26.	metres and t in second. We the $+x$ direction	hat will be the position of	ong x -axis is given by $x = 9$ this particle when it achiev	es maximum speed along
27	a) 32 m	b) 54 m	c) 81 m	d) $24 m$
27.	the body to fall through the	ne last metre of its fall, is	ght of 19.6m. If $g = 9.8 \text{ms}^-$	
28	a) 2.00 s Acceleration of a particle	b) 0.05 s	c) 0.45 s	d) 1.95 s
20.	a) Direction of velocity ch	-	b) Magnitude of velocity of	changes
	c) Both of above	0	d) Speed changes	-0

- 30. A body projected vertically upwards crosses a point twice in its journey at a height h just after t_1 and t_2 second. Maximum height reached by the body is
 - a) $\frac{g}{4}(t_1+t_2)^2$
- b) g $\left(\frac{t_1 + t_2}{4}\right)^2$
- c) $2g \left(\frac{t_1 + t_2}{4}\right)^2$
- d) $\frac{g}{4}(t_1t_2)$
- 31. A particle moving with a uniform acceleration along a straight line covers distance a and b in successive intervals of p and q second. The acceleration of the particle is
 - a) $\frac{pq(p+q)}{2(bp-aq)}$
- b) $\frac{2(aq bp)}{pq(p q)}$
- c) $\frac{bp aq}{pq(p q)}$ d) $\frac{2(bp aq)}{pq(p q)}$
- 32. The displacement-time graphs of two particles A and B are straight lines making angles of respectively 30° and 60° with the time axis. If the velocity of A is v_A and that of B is v_B , then the value of $\frac{v_A}{v_B}$ is
 - a) $\frac{1}{2}$


- 33. A small block sides without friction down an inclined plane starting from rest. Let S_n be the distance travelled from time t = n - 1 to t = n. Then $\frac{S_n}{S_{n+1}}$ is
 - a) $\frac{2n-1}{2n}$
- b) $\frac{2n+1}{2n-1}$ c) $\frac{2n-1}{2n+1}$

- 34. The area under acceleration-time graph gives
 - a) Distance travelled

b) Change in acceleration

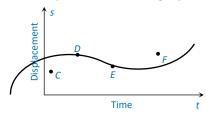
c) Force acting

- NEWTONES d) Change in velocity
- 35. A ball is thrown vertically upwards. Which of the following graph/graphs represent velocity-time graph of the ball during its flight (air resistance is neglected)

b) B

c) C

- d) D
- 36. A body, thrown upwards with some velocity, reaches the maximum height of 20m. Another body with double the mass thrown up, with double initial velocity will reach a maximum height of
- b) 16 m


c) $80 \, m$

- d) 40 m
- 37. The relation between time and distance is $t = \alpha x^2 + \beta x$, where α and β are constants. The retardation is
 - a) $2\alpha v^3$

b) $2\beta v^3$

- c) $2\alpha\beta v^3$
- d) $2\beta^2 v^3$

38. The displacement-time graph of moving particle is shown below

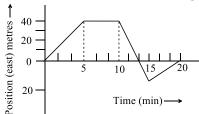
The instantaneous velocity of the particle is negative at the point

a) L

b) F

c) C

- d) *E*
- 39. A car accelerates from rest at a constant rate of 2ms⁻² for sometime. Then, it retards at a constant rate of 4ms⁻² and comes to rest. If the total time for which it remains in motion is 3s, what is the total distance travelled?
 - a) 2m

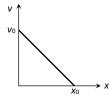

b) 3m

c) 4m

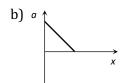
- d) 6m
- 40. The acceleration 'a' in m/s^2 of a particle is given by $a = 3t^2 + 2t + 2$ where t is the time. If the particle starts out with a velocity u = 2m/s at t = 0, then the velocity at the end of 2 seconds is
 - a) 12 m/s
- b) 18 m/s
- c) 27 m/s
- d) $36 \, m/s$

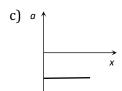
- 41. The area under acceleration-time graph gives
 - a) Distance in travelled
 - c) Force acting

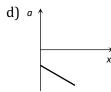
- b) Change in acceleration
- d) Change in velocity
- 42. Which of the following 4 statements is false
 - a) A body can have zero velocity and still be accelerated
 - b) A body can have a constant velocity and still have a varying speed
 - c) A body can have a constant speed and still have a varying velocity
 - d) The direction of the velocity of a body can change when its acceleration is constant
- 43. A body begins to walk eastward along a street in front of his house and the graph of his position from home is shown in the following figure. His average speed for the whole time interval is equal to


NEWTON'S APPLI

a) 8 *m/min*


- b) 6 m/min
- c) $\frac{8}{3}$ m/min
- d) 2 m/min
- 44. A particle is moving with constant acceleration from A to B in a straight line AB. If u and v are the velocities at A and B respectively then its velocity at the midpoint C will be
 - a) $\left(\frac{u^2+v^2}{2u}\right)^2$
- b) $\frac{u+v}{2}$
- c) $\frac{v-u}{2}$


 $d)\sqrt{\frac{u^2+v^2}{2}}$


45. The given graph shows the variation of velocity with displacement. Which one of the graph given below correctly represents the variation of acceleration with displacement

- 46. A stone is thrown with an initial speed of $4.9 \, m/s$ from a bridge in vertically upward direction. It falls down in water after 2 sec. The height of the bridge is
 - a) 4.9 m
- b) 9.8 m
- c) 19.8 m
- d) 24.7 m
- 47. A bus start from rest with an acceleration of 1 ms^{-2} . A man who is 48m behind the bus starts with a uniform velocity of $10ms^{-1}$. The minimum time after which the ma will catch the bus

b) 8 s

- 48. A body A is thrown up vertically from the ground with a velocity V_0 and another body B is simultaneously dropped from a height H. They meet at a height $\frac{H}{2}$ if V_0 is equal to
 - a) $\sqrt{2gH}$
- b) \sqrt{gH} c) $\frac{1}{2}\sqrt{gH}$
- 49. A car travels equal distances in the same direction with velocities 60kmh⁻¹, 20 km h⁻¹ and 10 km h⁻¹respectively. The average velocity of the car over the whole journey of motion is
 - a) 8 ms^{-1}
- b) 7 ms^{-1}
- c) 6 ms⁻¹
- d) 5 ms^{-1}
- 50. Two bodies of different masses are dropped from heights of 16 m and 25 m respectively. The ratio of the time taken by them to reach the ground is
 - a) $\frac{25}{16}$

- b) $\frac{5}{4}$ NEWTON'S (c) $\frac{4}{5}$ E

d) $\frac{16}{25}$

1 (d)

Let the car accelerate at rate α for time t_1 then maximum velocity attained,

$$v = 0 + at_1 = at_1$$

Now, the car decelerates at a rate β for time $(t - t_1)$ and finally comes to rest. Then,

$$0 = v - \beta(t - t_1) \Rightarrow 0 = \alpha t_1 - \beta t + \beta t_1$$

$$\Rightarrow t_1 = \frac{\beta}{\alpha + \beta} t$$

$$\therefore v = \frac{\alpha\beta}{\alpha + \beta}t$$

2 **(a**)

Effective speed of bullet

- = speed of bullet + speed of police jeep
- = 180 m/s + 45 km/h = (180 + 12.5) m/s= 192.5 m/s

Speed of thief's jeep = 153 km/h = 42.5 m/sVelocity of bullet w. r. t. thief's car = 192.5 - 42.5 = 150 m/s

3 **(c**)

From acceleration time graph, acceleration is constant for first part of motion so, for this part velocity of body increases uniformly with time and as a=0 then the velocity becomes constant. Then again increased because of acceleration

4 **(b)**

5 **(c)**

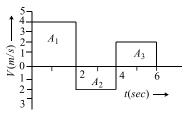
$$y = a + bt + ct^2 - dt^4$$

$$\therefore v = \frac{dy}{dt} = b + 2ct - 4dt^3 \text{ and } a = \frac{dv}{dt} = 2c - 12dt^2$$

Hence, at t = 0, $v_{\text{initial}} = b$ and $a_{\text{initial}} = 2c$

6 **(d**

$$u = at, x = \int u dt = \int at dt = \frac{at^2}{2}$$


For $t = 4 \sec_{x} x = 8a$

7 **(c)**

8 **(a**)

Displacement = Summation of all the area with sign

$$= (A_1) + (-A_2) + (A_3)$$

= (2 \times 4) + (-2 \times 2) + (2 \times 2)

\therefore Displacement = 8 m

Distance = Summation of all the areas without sign

$$= |A_1| + |-A_2| + |A_3| = |8| + |-4| + |4|$$

$$= 8 + 4 + 4$$

 \therefore Distance = 16 m

9 **(d**)

$$\frac{\tan 30^{\circ}}{\tan 45^{\circ}} = \frac{1}{\sqrt{3}} + 1 = 1:\sqrt{3}$$

10 (a)

Slope of velocity-time graph measures acceleration. For graph (a) slope is zero. Hence a = 0 *i. e.* motion is uniform

11 (b)

The velocity of balloon at height h, $v = \sqrt{2\left(\frac{g}{8}\right)}h$ When the stone released from this balloon, it will

go upward with velocity, $=\frac{\sqrt{gh}}{2}$ (Same as that of balloon). In this condition time taken by stone to reach the ground

$$t = \frac{v}{g} \left[1 + \sqrt{1 + \frac{2gh}{v^2}} \right] = \frac{\sqrt{gh/2}}{g} \left[1 + \frac{2gh}{gh/4} \right]$$
$$= \frac{2\sqrt{gh}}{g} = 2\sqrt{\frac{h}{g}}$$

12 **(b)**

Let v be the velocity of the train after time t_1 .

Then
$$v = \alpha t_1 = \beta t_2; x_1 = \frac{1}{2} \alpha t_1^2$$

and
$$x_2 = \frac{1}{2} \beta t_2^2$$

$$\therefore \frac{\beta}{\alpha} = \frac{t_1}{t_2} \text{ and } \frac{x_1}{x_2} = \frac{\alpha t_1^2}{\beta t_2^2} = \frac{\alpha}{\beta} \times \frac{\beta^2}{\alpha^2} = \frac{\beta}{\alpha}$$

$$\therefore \frac{x_1}{x_2} = \frac{\beta}{\alpha} = \frac{t_1}{t_2}$$

13 **(d**)

I is not possible because total distance covered by a particle increases with time

II is not possible because at a particular time, position cannot have two values

III is not possible because at a particular time, velocity cannot have two values

IV is not possible because speed can never be negative

14 **(a)**

For first stone u = 0 and

For second stone $\frac{u^2}{2g}4h \Rightarrow u^2 = 8gh$

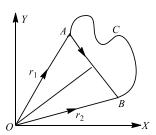
$$\therefore u = \sqrt{8gh}$$

Now,
$$h_1 = \frac{1}{2}gt^2$$

$$u = \sqrt{8gh}$$

Where, t = time cross each other

$$\therefore h_1 + h_2 = h$$


$$\Rightarrow \frac{1}{2}gt^2 + \sqrt{8ght} - \frac{1}{2}gt^2 = h \Rightarrow t = \frac{h}{\sqrt{8gh}} = \sqrt{\frac{h}{8g}}$$

15 **(d)**

The average speed

$$v_{\rm av} = \frac{{
m length~of~path~}ACB}{{
m time~interval~}(t_2 - t_1)}$$

... (i)

And average velocity,

$$\mathbf{v}_{av} = \frac{\text{displacement}}{\text{time interval}} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1} \dots \text{(ii)}$$

But we know that distance is always be greater than or equal to magnitude of displacement. So the average speed will always be greater than or equal to the magnitude of average velocity.

From Eqs. (i) and (ii)

$$\frac{\mathbf{v}_{\text{av}}}{v_{\text{av}}} = \frac{\text{displacement}}{\text{length of path (distance)}} \le 1$$

16 **(b)**

Velocity of graph = Area of a-t graph = $(4 \times 1.5) - (2 \times 1) = 4m/s$

$$v \propto \sqrt{h} : \frac{v_1}{v_2} = \sqrt{\frac{a}{b}}$$

So, (b) is the correct choice.

The velocity acquired by a body in falling freely from rest through height h is $\sqrt{2gh}$.

$$[u = 0, v =?, 'a' = g, 'S' = h, v^2 - u^2 = 2aS]$$

18 (d)

Average acceleration =
$$\frac{\text{Change in velocity}}{\text{Time taken}} = \frac{v_2 - v_1}{t_2 - t_1}$$

= $\frac{[10 + 2(5)^2] - [10 + 2(2)^2]}{3} = \frac{60 - 18}{3} \frac{14m}{s^2}$

19 **(b)**

The ball is thrown vertically upwards, then according to equation of motion.

$$(0)^2 - u^2 = -2gh$$
 ... (i)

And

$$0 = u - gt \qquad \dots (ii)$$

From Eqs. (i) and (ii),

$$h = \frac{gt^2}{2}$$

When the ball is falling downwards after reaching the maximum height

APPLE

$$s = ut' + \frac{1}{2}g(t')^2$$

$$\frac{h}{2} = (0)t' + \frac{1}{2}g(t')^2$$

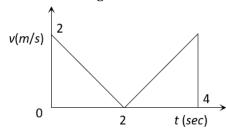
$$t' = \sqrt{\frac{h}{g}}$$

$$t' = \frac{t}{\sqrt{2}}$$

Hence, the total time from the time of projection of reach a point at half of its maximum height while returning = t + t'

$$=t+\frac{t}{\sqrt{2}}=\left(1+\frac{1}{\sqrt{2}}\right)t$$

20 **(c)**


Average velocity = $\frac{Displacement}{Time\ interval}$

A particle moving in a given direction with non-zero velocity cannot have zero speed.

In general, average speed is not equal to magnitude of average velocity. However, it can be so if the motion is along a straight line without change in direction

21 **(b)**

The velocity time graph for given problem is shown in the figure.

Distance travelled S =Area under curve = 2 + 2 = 4m

$$v = u + \int adt = u + \int (3t^2 + 2t + 2)dt$$

$$= u + \frac{3t^3}{3} + \frac{2t^2}{2} + 2t = u + t^3 + t^2 + 2t$$

$$= 2 + 8 + 4 + 4 = 18 \, \text{m/s} \quad (As \, t = 2 \, \text{sec})$$

23 **(d**)

By the time 5th water drop starts falling, the first water drop reaches the ground.

As
$$u = 0$$
, $h = \frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times t^2$
or $5 = \frac{1}{2} \times 10 \times t^2$ or $t = 1$ s

Hence, the interval of each water drop = $\frac{1s}{4}$ = 0.25s.

When the 5th drop starts its journey towards ground, the third drop travels in air for $t_1 = 0.25 + 0.25 = 0.5$ s

 \div Height (distance) covered by $3^{\rm rd}$ drop in air is

$$h_1 = \frac{1}{2}gt_1^2 = \frac{1}{2} \times 10 \times (0.5)^2$$

= 5 \times 0.25 = 1.25 m

So, third water drop will be at a height of = 5 - 1.25 = 3.75 m

24 **(d)**

Since, the initial position of cyclist coincides with final position, so his net displacement is zero.

Average speed =
$$\frac{\text{total distance travelled}}{\text{total time taken}}$$

= $\frac{OP + PQ + QO}{10} \text{km min}^{-1}$
= $\frac{1 + \frac{\pi}{2} \times 1 + 1}{10} \text{km min}^{-1}$

$$= \frac{\pi + 4}{20} \times 60 \text{ kmh}^{-1} = 21.4 \text{ kmh}^{-1}$$

25 **(b)**

Time =
$$\frac{\text{Total length}}{\text{Relative velocity}} = \frac{50 + 50}{10 + 15} = \frac{100}{25}$$

= $4 \sec c$

26 **(b**

$$x = 9t^2 - t^3$$
; $v = \frac{dx}{dt} = 18t - 3t^2$, For maximum speed

$$\frac{dv}{dt} = \frac{d}{dt} [18t - 3t^2] = 0 \Rightarrow 18 - 6t = 0 \therefore t$$
$$= 3 \sec$$

i.e., Particle achieve maximum speed at t=3 sec. At this instant position of this particle, $x=9t^2-t^3$

$$= 9(3)^2 - (3)^3 = 81 - 27 = 54 m$$

27 **(b**

$$\Delta t = \sqrt{\frac{2 \times 19.6}{9.8}} s - \sqrt{\frac{2 \times 18.6}{9.8}} s = 2 - 1.95 = 0.05s$$

28 **(c)**

Because acceleration is a vector quantity

29 (c)

$$\therefore x = a\cos \omega t$$

$$\therefore v = \frac{dx}{dt} = -a\omega \sin \omega t$$

The instantaneous speed is given by modulus of instantaneous velocity.

 \therefore speed= $|u| = |-a\omega \sin \omega t|$

AP Hence, (c) is correct.

30 (c)

Time taken by the body to reach the point A is t_1 (During upward journey).

The body crosses this point again (during downward journey) after t_2 , ie, the body takes the time $(t_2 - t_1)$ to come again at point A.

So, the time taken by the body to reach at point *B* (a maximum height).

$$t = t_1 \left(\frac{t_2 - t_1}{2} \right)$$

[: Time pf ascending = Time of descending]

$$t = \frac{t_1 + t_2}{2}$$

So, maximum height $H = \frac{1}{2} gt^2$

$$=\frac{1}{2}g\left(\frac{t_1+t_2}{2}\right)^2$$

$$=2g\left(\frac{t_1+t_2}{4}\right)^2$$

31 **(b)**

According to problem, when

$$s = a, t = p$$

$$varphi s = ut + \frac{1}{2}ft^2$$
 (here, f =acceleration)

$$\therefore a = up + \frac{fp^2}{2}$$
 (i)

For
$$s = b$$
, $t = q$

$$b = uq + \frac{fq^2}{2}$$
 (ii)

After solving Eqs. (i) and (ii),

$$f = \frac{2(aq - bp)}{pq(p - q)}$$

32 **(d**)

$$\frac{v_A}{v_B} = \frac{\tan 30^\circ}{\tan 60^\circ} = \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{1}{3}$$

33 **(c)**

$$S_n = \frac{1}{2}g\cos\theta (2n-1), S_{n+1}$$

$$= \frac{1}{2}g\cos\theta \{2(n+1) - 1\}$$

$$\frac{S_n}{S_{n+1}} = \frac{2n-1}{2n+1}$$

34 **(d**)

35 **(d)**

In the positive region the velocity decreases linearly (during rise) and in the negative region velocity increases linearly (during fall) and the direction is opposite to each other during rise and fall, hence fall is shown in the negative region

36 (c)

Mass does not affect maximum height $H = \frac{u^2}{2g} \Rightarrow H \propto u^2$, So if velocity is doubled then height will become four times.i.e. $H = 20 \times 4 = 10$

80m

$$\frac{dt}{dx} = 2\alpha x + \beta \Rightarrow v = \frac{1}{2\alpha x + \beta}$$

$$\therefore a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$$

$$a = v\frac{dv}{dx} = \frac{-v \cdot 2\alpha}{(2\alpha x + \beta)^2} = -2\alpha \cdot v \cdot v^2 = -2\alpha v^3$$

 \therefore Retardation = $2\alpha v^3$

38 **(d)**

Slope of displacement time graph is negative only at point time E

39 **(d)**

Using, v = u + at or v - u = at, we find that if $|\vec{a}|$ is, it t is the time for acceleration, then $\frac{t}{2}$ is the time for retardation

Now,
$$t + \frac{t}{2} = 3$$
 or $\frac{3t}{2} = 3$ or $t = 2s$

$$S = \frac{1}{2} \times 2 \times 2 \times 2 + \frac{1}{2} \times 4 \times 1 \times 1 = (4 + 1)$$

40 **(b)**

$$v = u + \int adt = u + \int (3t^2 + 2t + 2)dt$$

$$= u + \frac{3t^3}{3} + \frac{2t^2}{2} + 2t = u + t^3 + t^2 + 2t$$

$$= 2 + 8 + 4 + 4 = 18 \text{ m/s} \quad (As t = 2 \text{ sec})$$

41 (d)

The area under acceleration-time graph gives change in velocity.

42 **(b)**

Constant velocity means constant speed as well as same direction throughout

43 **(b)**

Average speed is the ratio of distance to time taken

Distance travelled from 0 to 5s = 40 m

Distance travelled from 5 to 10s = 0 m

Distance travelled from 10 to 15s = 60 m

Distance travelled from 15to 20s = 20

So, total distance = 40 + 0 + 60 + 20 = 120 m

Total time taken = 20 minutes

Hence, average speed

$$= \frac{\text{distance travelled } (m)}{\text{time (min)}} = \frac{120}{20} = 6 \text{ m/min}$$

44 **(d)**

Let S be the distance between AB and a be constant acceleration of a particle. Then

$$v^2 - u^2 = 2aS$$

Or
$$aS = \frac{v^2 - u^2}{2}$$
 ... (i)

Let v_c be velocity of a particle at midpoint C

$$\therefore v_c^2 - u^2 = 2a\left(\frac{S}{2}\right)$$

$$v_c^2 = u^2 + aS = u^2 + \frac{v^2 - u^2}{2}$$
 [Using (i)]

$$v_c = \sqrt{\frac{u^2 + v^2}{2}}$$

45 (a)

Given line have positive intercept but negative slope. So its equation can be written as

$$v = -mx + v_0$$
(i) [where $m = \tan \theta = \frac{v_0}{x_0}$]

By differentiating with respect to time we get

$$\frac{dv}{dt} = -m\frac{dx}{dt} = -mv$$

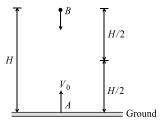
Now substituting the value of \boldsymbol{v} from eq. (i) we get

$$\frac{dv}{dt} = -m[-mx + v_0] = m^2x - mv_0 : a$$
$$= m^2x - mv_0$$

 $i.\,e.$ the graph between a and x should have positive slope but negative intercept on a-axis. So graph (a) is correct

46 **(b)**

Speed of stone in a vertically upward direction is $4.9 \ m/s$. So for vertical downward motion we will consider $u = -4.9 \ m/s$


$$h = ut + \frac{1}{2}gt^2 = -4.9 \times 2 + \frac{1}{2} \times 9.8 \times (2)^2$$
$$= 9.8 m$$

47 **(b**)

$$10t = 48 + \frac{1}{2} \times 1 \times t^2$$
 or $t^2 - 20t + 96 = 0$ or $t^2 - 8t - 12t + 96 = 0$ or $t(t - 8) - 12(t - 8) = 0$ or $(t - 12)(t - 8) = 0$ or $t = 8$ s or $t = 12$ s But we are interested in minimum time.

48 **(b)**

Let the two bodies A and B respectively meet at a time t, at a height $\frac{H}{2}$ from the ground

Using
$$S = ut + \frac{1}{2}at^2$$

For a body *A*,
$$u = V_0$$
, $a = -g$, $S = \frac{H}{2}$

$$\therefore \frac{H}{2} = V_0 t - \frac{1}{2}gt^2 \qquad \dots (i)$$

For body
$$B$$
, $u = 0$, $a = +g$, $S = \frac{H}{2}$

$$\therefore \frac{H}{2} = \frac{1}{2}gt^2 \qquad ...(ii)$$

Equating equations (i) and (ii), we get

$$V_0 t - \frac{1}{2}gt^2 = \frac{1}{2}gt^2 \Rightarrow V_0 t = gt^2 \text{ or } t = \frac{V_0}{g}$$

Substituting the value of t in equation (i), we get

$$\frac{H}{2} = V_0 \times \left(\frac{V_0}{g}\right) - \frac{1}{2}g\left(\frac{V_0}{g}\right)^2 = \frac{V_0^2}{g} - \frac{1}{2}\frac{V_0^2}{g}$$

$$\frac{H}{2} = \frac{1}{2} \frac{V_0^2}{g} \text{ or } V_0^2 = gH \Rightarrow V_0 = \sqrt{gH}$$

Average velocity =
$$\frac{3x}{\frac{x}{60} + \frac{x}{20} + \frac{x}{10}} = \frac{3x}{\frac{x+3x+6x}{60}}$$

$$= \frac{3x \times 60}{10x} = 18 \text{kmh}^{-1}$$

$$= \frac{18 \times 5}{18} \text{ms}^{-1} = 5 \text{ms}^{-1}$$

50 **(c)**

$$h = 0 + \frac{1}{2}gt^2 \implies t^2 \propto h$$

$$\therefore \frac{t_1}{t_2} = \sqrt{\frac{h_1}{h_2}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$$

Motion on a plane

			-		
1.	A particle moves in ciracceleration of particle	rcle of radius 25 cm at t e is	he rate of two revolut	ions per second. The	
	a) $2\pi^2 \text{ms}^{-2}$	b) $4\pi^2 \text{ms}^{-2}$	c) $8\pi^2 \text{ms}^{-2}$	d) $\pi^2 \text{ms}^{-2}$	
2.	A body of mass $5 kg$ is	s moving in a circle of ra	adius 1 \emph{m} with an ang	ular velocity of 2 radian/sec.	
	The centripetal force	is			
	a) 10 <i>N</i>	b) 20 <i>N</i>	c) 30 N	d) 40 N	
3.				ms ⁻¹). The speed of the	
		est point of the trajector			
	a) 3 ms^{-1}	b) 2 ms ⁻¹		d) Zero	
4.	= :	_		gle of 30°. It crosses a wall	
	after 3 s. How far beyo	ond the wall the sto <mark>ne w</mark>		,	
	a) 80.5 m	b) 85.6 m	c) 86.6 m	d) 75.2 m	
5.	$C \longrightarrow A$	NEWTON	'S APPLE		
	Figure shows a body of	of mass m moving with	a uniform speed \emph{v} alo	ng a circle of radius r . The	
	change in velocity in g	going from A to B is			
	a) $v\sqrt{2}$	b) $v/\sqrt{2}$	c) <i>v</i>	d) zero	
6.	The equation of trajec	tory of a projectile is y	$=10x-\left(\frac{5}{9}\right)x^2$. if we	e assume $g = 10 \text{ms}^{-2}$, the	
	range of projectile (in metre) is				
	a) 36	b) 24	c) 18	d) 9	
7.	In a projectile motion	, velocity at maximum h	neight is		
	a) $\frac{u\cos\theta}{2}$	b) $u\cos\theta$	c) $\frac{u \sin \theta}{2}$	d) None of these	
8.	At what point of a proeach other	jectile motion accelerat	cion and velocity and v	velocity are perpendicular to	
	a) At the point of proj	ection	b) At the point of	b) At the point of drop	
	c) At the topmost poin	ıt	d) Any where in b and topmost p	etween the point of projection oint	
9.	The ratio of the angul	ar speed of minutes han			

c) 1:6

a) 6:1

b) 12:1

d) 1:12

10.	A stone of mass m is tied to a string of length l and rotated in a circle with a constant speed v . If the string is released, the stone flies				
	a) Radially outwards	b) Radially inwards			
	c) Tangentially outwards	d) With an acceleration	mv^2/l		
11.	When a simple pendulum is rotated in a vertica force is	l plane with constant ang	gular velocity, centripetal		
	a) Maximum at highest point	b) Maximum at lowest	point		
12	c) Same at all lower point	d) Zero	and a magnagtively with		
13.	Two particles of equal masses are revolving in on the same speed. The ratio of their centripetal for		and r_2 respectively with		
	a) $\frac{r_2}{r_1}$ b) $\sqrt{\frac{r_2}{r_1}}$	c) $\left(\frac{r_1}{r_2}\right)^2$	$\mathrm{d})\left(\frac{r_2}{r_1}\right)^2$		
14.	The horizontal and vertical displacement x and		n time t are given by $x =$		
	6t metre and $y = 8t - 5t^2$ metre. The range of	= :			
4 -	a) 9.6 b) 10.6	c) 19.2	d) 38.4		
15.	A man projects a coin upwards from the gate of man will be		-		
	a) Parabolic	b) Inclined straight line			
		d) Horizontal straight l			
16.	A cannon on a level plane is aimed at an angle θ				
	muzzle velocity v_0 towards a vertical cliff a dist which the shell strikes the side walls of the cliff		eight from the bottom at		
	a) $D \sin \theta - \frac{gD^2}{2v_0^2 \sin^2 \theta}$ b) $D \cos \theta - \frac{gD^2}{2v_0^2 \cos^2 \theta}$		d) $D \tan \theta - \frac{gD^2}{2v_0^2 \sin^2 \theta}$		
17.	Which one of the following statements is not co	. 0	0 -		
	a) The speed of the particle remains constant				
		center			
	c) The angular speed remains constant	d) The velocity remains	s constant		
18.	An aeroplane flying horizontally with a speed o		omb at a height of 490 m		
	from the ground. When will the bomb strike the ground?				
10	a) 8 s b) 6 s	c) 7 s	d) 10 s		
19.	A ball is projected from a certain point on the su horizontal surface. The horizontal and vertical of				
	$x = 10\sqrt{3}t \text{ and } y = 10t - t^2$				
	The maximum height attained by the ball is) 5 0	1) 25		
20	a) 100 m b) 75 m The equation of motion of a projectile are given	c) 50 m	d) 25 m		
20.	The equation of motion of a projectile are given. The angle of projection is	y = 36 t metre and 2	2y = 96t - 9.8t metre.		
	a) $\sin^{-1}\left(\frac{4}{5}\right)$ b) $\sin^{-1}\left(\frac{3}{5}\right)$	c) $\sin^{-1}\left(\frac{4}{3}\right)$	d) $\sin^{-1}\left(\frac{3}{4}\right)$		

21.	A stone projected with a velocity u at an angle θ with the horizontal reaches maximum height H_1 .				
	When it is projected with velocity u at an angle $\left(rac{\pi}{2}- heta ight)$ with the horizontal, it reaches maximun				
	height H_2 . The relation between the horizontal range R of the projectile, H_1 and H_2 is				
	a) $R = 4\sqrt{H_1H_2}$	b) $R = 4(H_1 - H_2)$	c) $R = 4(H_1 + H_2)$	d) $R = \frac{H_1^2}{H_2^2}$	
22.		hen launched at an angle n launched at an angle of		is 1.5 km. What is the	
	a) 3.0 km	b) 1.5 km	c) 6.0 km	d) 0.75 km	
23.	A body of mass <i>m</i> is pro	\dot{v} jected with a speed u ma	=	horizontal. The change	
	in momentum suffered point of its path will be	by the body along he <i>y</i> -a	xis between the starting	point and the highest	
	a) mu cos α	b) $mu \sin \alpha$	c) 3 mu sin a	d) mu	
24.	same vertical plane to hangle is 30° the sum of	ed from ground with equal have equal range but at di their maximum heights is	ifferent angle above the less (assume $g = 10m/s^2$)	norizontal. If one of the	
a -	a) 400 m	b) 20 m	c) 30 m	d) 40 <i>m</i>	
25.	The equation of motion	of a projectile is $y = 12x$	$x - \frac{3}{4}x^2$. The horizontal c	component of velocity is	
	3ms^{-1} . What is the range	ge of the projectile?			
	a) 18 m	b) 16 m		d) 21.6 m	
26.	angle $\boldsymbol{\beta}$ with the horizon				
	a) $u \cos \alpha$	b) $\frac{u}{\cos \beta}$	c) <i>u</i> cos α cos β	d) $\frac{u \cos \alpha}{\cos \beta}$	
27.	For an object thrown at related as	45° to horizontal, the ma	aximum height (H) and h	norizontal range (R) are	
		b) $R = 8H_{\text{NEWTON'S}}$	C R = 4H	d) R = 2H	
28.	A particle is thrown abo	ove, the correct $v - t$ graph	nh will he	ujn – 211	
20.	v	v	v	v	
	1	↑	†	↑	
	a) t	b)	c)	d)	
29.	Two bodies are projecte	ed with the same velocity	v. If one is projected at ar	angle of 30° and the	
	= :	to the horizontal, the rat	= :	=	
	a) 3:1	b) 1:3	c) 1:2	d) 2:1	
30.	The distance r from the	origin of a particle movi	ng in x - y plane varies	with time as $r = 2t$ and	
	the angle made by the r	adius vector with positiv	$e x$ -axis is $\theta = 4t$. Here,	t is in second, r in metre	
	and $\boldsymbol{\theta}$ in radian. The spectrum	eed of the particle at $t =$	1 s is		
	a) 10 ms^{-1}	b) 16 ms^{-1}	c) 10 ms ⁻¹	d) 12 ms^{-1}	
31.		ion, the velocity vector a		re	
	a) Perpendicular to each	h other	b) Same direction	_	
	c) Opposite direction		d) Not related to each o		
32.		tally with a velocity of 80	=		
	a) It falls 9.8 m	b) It falls $\frac{80}{9.8}$ m	c) It does not fall at all	d) It falls 4.9 m	

33.		•	60° above the horizontal at (assume the ball is stru	
	a) 8.2 m	b) 9.0 m	c) 11.6 m	d) 12.7 m
34.	A ball is projected from horizontal. Another bal maximum height of the	the ground at a speed of l is simultaneously relea	f $10ms^{-1}$ making an anglesed from a point on the vector is collide at the maximum	e of 30° with the rertical line along the
	a) 6.25 <i>m</i>	b) 2.5 <i>m</i>	c) 3.75 <i>m</i>	d) 5 <i>m</i>
35.	instant it returns to gro	ound is	tal. Then the total change	e of momentum by the
0.6	b) Weight of the ball × c) Weight of the ball × d) Weight of the ball ×	total time of flight horizontal range		(0.0403
36.			from the target should the	of $8.0 \times 10^3 m$ is to drop he bomb be released d) $9.124 km$
	horizontal plane so as t for the two paths, the w	o have same range <i>R</i> on a which one of the following	wo different angels of property and horizontal plane. If t_1 and grelations is correct? c) $t_1 t_2 = \frac{R}{2g}$	nd t_2 are the time taken
	The equation of a proje	ctile is $y = \sqrt{3}x - \frac{gx^2}{2}$. The	ne angle of projection is g	
	a) $\tan \theta = \frac{1}{\sqrt{3}}$	b) $\tan \theta = \sqrt{3}$	c) $\frac{\pi}{2}$	d) Zero
39.	a) its velocity is alwaysb) its velocity becomesc) its velocity makes ze	•	eleration ght ntal at its maximum heig	
40.	A stone is projected wit velocity of stone during	th a velocity $20\sqrt{2}$ ms ⁻¹ a	it an angle of 45° to the h g point to its maximum h	
41.	is			l. The angle of projection
	a) 60°	b) 15°	c) 30°	d) 45°
42.	uniformly circular if		elerations, the motion of a	
	a) $a_r = 0$ and $a_t = 0$	b) $a_r = 0$ but $a_t \neq 0$	c) $a_r \neq 0$ but $a_t = 0$	d) $a_r \neq 0$ and $a_t \neq 0$

43.	For a projectile, the ratio of maximum height reached to the square of flight time is $(g = 10 ms^{-2})$				
	a) 5:4	b) 5 : 2	c) 5 : 1	d) 10:1	
44.	. Two racing cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 respectively. Their speeds are such that each makes a complete circle in the same duration of time t . The ratio of the angular speed of the first to the second car is				
	a) m_1 : m_2	b) r_1 : r_2	c) 1:1	d) m_1 : r_1 : $m_2 r_2$	
45.	A particle is moving in	a horizontal circle with c	onstant speed. It has cons	stant	
	a) Velocity	b) Acceleration	c) Kinetic energy	d) Displacement	
46.	no surrounding atmosp second. The velocity wi	phere) are given by $y = th$ which the projectile is	$8t - 5t^2$ metre and $x = $ projected, is	on a certain planet (with = 6t metre, where t is in	
	a) 14 ms ⁻¹	b) 10 ms ⁻¹	c) 8 ms ⁻¹	d) 6 ms^{-1}	
47.	An aeroplane is flying vangular speed of the ae	-	$00\ m/s$ along a circular $\mathfrak p$	path of radius $100 m$. The	
	a) 1 rad/sec	b) 2 rad/sec	c) 3 rad/sec	d) 4 rad/sec	
48.	A particle comes round velocity of motion is	a circle of radius $1 m$ on	ce. The time taken by it is	s 10 <i>sec</i> . The average	
	a) $0.2 \ \pi m/s$	b) 2 πm/s	c) 2 m/s	d) Zero	
		200	12		
49.	= -	rom horizontal ma <mark>king a</mark> make angel 45° fr <mark>om ho</mark> t	_	elocity 40ms ⁻¹ . The time	
	a) 15 s	b) 2.0 s		d) 1.5 s	
50.	When a projectile is protime of flight is T_1 . Whe with the horizontal, its	ojected at a certain angle n the sa <mark>me projectile is t</mark> horizontal range is <i>R</i> and	with the horizontal, its hori	orizontal range is R and peed at some other angle product of T_1 and T_2 is	
	a) $\frac{R}{g}$	b) $\frac{2R}{g}$	c) $\frac{3R}{g}$	$d)\frac{4R}{g}$	

1 **(b)**

Acceleration of the particle is

$$a = r\omega^2 = r(2\pi n)^2$$
$$= 0.25 \times (2\pi \times 2)^2$$

$$=16\pi^2\times0.25$$

$$= 4\pi^2 \text{ ms}^{-2}$$

2 **(b)**

Centripetal force = $mr\omega^2 = 5 \times 1 \times (2)^2 = 20 N$

3 **(a)**

At the highest point, velocity is horizontal

4 @

$$T = \frac{2 \times 50 \times \frac{1}{2}}{10} = 5 \text{ s}$$

Horizontal distance travelled in last 2 s = $50 \times \cos 30^{\circ} \times 2$ m

$$= 100 \times \frac{2}{\sqrt{3}} \text{m} = 50\sqrt{3} \text{m} = 86.6 \text{ m}$$

5 **(a**)

$$|\overrightarrow{\Delta v}| = 2v\sin(\theta/2) = 2v\sin(\frac{90}{2}) = 2v\sin 45$$
$$= v\sqrt{2}$$

6 ©

Equation of projectile

$$y = x - \left(\frac{5}{9}\right)x^2$$

Standard equation

$$y = x \tan \theta - \frac{g}{2u^2 \cos^2 \theta} \cdot x^2$$

On comparing, we get

$$\tan \theta = 10$$

and
$$\frac{g}{2u^2\cos^2\theta} = \frac{5}{9}$$

or
$$10u^2\cos^2\theta = 9g$$

 $g = 10 \text{ ms}^{-2}$
 $\therefore u^2\cos^2\theta = 9$
range of projecticle $R = \frac{2u^2\tan\theta\cdot\cos\theta}{g}$
 $= \frac{2u^2\tan\theta\cdot\cos\theta}{g}$
 $(\because \sin\theta = \tan\theta\cdot\cos\theta)$
 $\frac{2(u^2\cos^2\theta)\cdot\tan\theta}{g}$
 $= \frac{2\times9\times10}{10} = 18 \text{ m}$

- 7 **(b)** Only horizontal component of velocity $(u \cos \theta)$
- 8 **(c)**

9

(b)
Angular speed of minute hand, $\omega_m = \frac{2\pi}{60 \times 60} \text{ rad s}^{-1}$ Angular speed of hour hand, $\omega_h = \frac{2\pi}{12 \times 60 \times 60} \text{ rad s}^{-1}$ $\therefore \frac{\omega_m}{\omega_h} = 12$

direction of velocity

- When a stone tied at the end of string is rotated in a circle, the velocity of the stone at an instant acts tangentially outwards the circle. When the string is released, the stone files off tangentially outwards *ie*, in the
- 11 **(c)**In a vertical circular motion, centripetal force remains same at all points on circular path and always directed towards the © of circular path
- 13 **(a)** $F = \frac{mv^2}{r}. \text{ If } m \text{ and } v \text{ are constants then } F \propto \frac{1}{r}$ $\therefore \frac{F_1}{F_2} = \left(\frac{r_2}{r_1}\right)$

14 (a) $x = (u \cos \theta)t = 6t$ $y = (u \sin \theta) t - \frac{1}{2}gt^2 = 8t - 5t^2$ Therefore, $u \sin \theta = 8$ $u \cos \theta = 6$ Range. $R = \frac{u^2 2 \sin 2\theta}{g}$ $= \frac{u^2 \times 2 \sin \theta \cos \theta}{g}$

$$= \frac{u^2 \times 2 \sin \theta \cos \theta}{g}$$
$$= \frac{2(u \sin \theta) (\cos \theta)}{g}$$
$$= \frac{2(8)(6)}{10} = 9.6 \text{ m}$$

15

16

- Because horizontal velocity is same for coin and the observer. So relative horizontal displacement will be zero
- Equation of trajectory for oblique projectile motion

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$
Substituting $x = D$ and $u = v_0$

$$h = D \tan \theta - \frac{gD^2}{2u_0^2 \cos^2 \theta}$$
17 (d)

- 18 **(d)** $t = \sqrt{\frac{2 \times 490}{9.8}} = \sqrt{\frac{2 \times 49 \times 100}{98}} = \sqrt{100} \text{ s}$ = 10 s
- = 10 s19 **(d)** $v_y = \frac{d}{dt}(y) = \frac{d}{dt}(10t) \frac{d}{dt}(t^2) = 10 2t$ At maximum height, $v_y = 0$ $\therefore 10 2t = 0 \text{ or } 2t = 10 \text{ or } t = 5 \text{ s}$ $\therefore y = (10 \times 5 5 \times 5) \text{ m} = 25 \text{ m}$ 20 **(a)** $x = 36t \therefore v_x = \frac{dx}{dt} = 36 \text{ m/s}$ $y = 48t 4.9t^2 \therefore v_y = 48 9.8t$

at $t = 0 v_x = 36$ and $v_y = 48 m/s$

So, angle of projection $\theta = \tan^{-1} \left(\frac{v_y}{v_x} \right) = \tan^{-1} \left(\frac{4}{3} \right)$ Or $\theta = \sin^{-1} (4/5)$

$$H_1 = \frac{u^2 \sin^2 \theta}{2g} \text{ and } H_2 = \frac{u^2 \sin^2(90 - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{2g}$$

$$H_1 H_2 = \frac{u^2 \sin^2 \theta}{2g} \times \frac{u^2 \cos^2 \theta}{2g} = \frac{(u^2 \sin 2\theta)^2}{16g^2}$$

$$= \frac{R^2}{16}$$

$$\therefore R = 4\sqrt{H_1 H_2}$$

22 **(a)**

The horizontal range $R_x = \frac{u^2 \sin 2\theta}{g}$

When projected at angle of 15°

$$R_{x1} = \frac{u^2}{g}\sin(2 \times 15) = \frac{u^2}{2g} = 1.5$$
km

When projected at angle of 45°

$$R_{x1} = \frac{u^2}{g} \sin(2 \times 45^\circ) \frac{u^2}{g}$$
$$= \frac{2u^2}{2g} = 2 \times 1.5 = 3.0 \text{ km}$$

23 **(b)**

At the highest point, velocity along *y*-axis is zero. Therefore, change in linear momentum $= m(u \sin \alpha - 0) = mu \sin \alpha$

24 **(b)**

$$H_1 + H_2 = \frac{u^2}{2g} (\sin^2 30^\circ + \sin^2 60^\circ)$$
$$= \frac{20^2}{2 \times 10} \left(\frac{1}{4} + \frac{3}{4} \right) = 20 \ m$$

25 **(b**)

Given,
$$y = 12x - \frac{3}{4}x^2$$

 $u_x = 3 \text{ ms}^{-1}$
 $v_y = \frac{dy}{dt} = 12\frac{dx}{dt} - \frac{3}{2}x\frac{dx}{dt}$
At $x = 0$, $v_y = u_y = 12\frac{dx}{dt} = 12u_x = 12 \times 3 = 36 \text{ ms}^{-1}$
 $a_y = \frac{d}{dt}(\frac{dy}{dt}) = 12\frac{d^2x}{dt^2} - \frac{3}{2}(\frac{dx}{dt} + x\frac{d^2x}{dt^2})$

But
$$\frac{d^2x}{dt^2} = a_x = 0$$
, hence

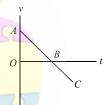
$$a_y = -\frac{3}{2} \frac{dx}{dt} = -\frac{3}{2} u_x = -\frac{3}{2} \times 3 - \frac{9}{2} \text{ms}^{-2}$$

Range $R = \frac{2u_x u_y}{a_y} = \frac{2 \times 3 \times 12}{9/2} = 16 \text{m}$

 $v \cos \beta = u \cos \alpha$ $v = \frac{u \cos \alpha}{\cos \beta}$

27 ©

For $\theta = 45^{\circ}$


$$H_{\text{max}} = \frac{u^2 \sin^2 45^{\circ}}{2g} = \frac{u^2}{4g} \quad \left[\because \sin 45^{\circ} = \frac{1}{\sqrt{2}} \right]$$

$$R = \frac{u^2 \sin 90^{\circ}}{g} = \frac{u^2}{g}; \ \therefore \frac{R}{H} = \frac{u^2}{g} \times \frac{4g}{u^2} = 4 \Rightarrow R$$

$$= 4H$$

28 **(a)**

Taking initial position as origin and direction of motion (*i. e.*, vertically up) as positive. As the particle is thrown with initial velocity, at highest point its velocity is zero and then it returns back to its reference position. This situation is best depicted in figure of option (a)

In figure, AB part denotes upward motion and BC part denotes downward motion

29 **(b)**

As
$$H = \frac{u^2 \sin^2 \theta}{2g}$$
 : $\frac{H_1}{H_2} = \frac{\sin^2 \theta_1}{\sin \theta_2} = \frac{\sin^2 30^\circ}{\sin^2 60} = \frac{1/4}{3/4} = \frac{1}{3}$

30 **(b)**

Here,
$$r = 2t$$
, $\theta = 4t$
 $l = r\theta = (2t)(4t) = 8t^2$
 $v = \frac{dl}{dt} = \frac{d}{dt}(8t)^2 = 16t$
 $= 16 \times 1 = 16 \text{ ms}^{-1}$

31 **(a)**

Because velocity is always tangential and centripetal acceleration is radial.

32 **(d)**

$$s = 0 \times 1 + \frac{1}{2} \times 9.8 \times 1 \times 1 = 4.9 \text{ m}$$

33 (a)

Horizontal component of velocity $v_x = 25 \cos 60^\circ = 12.5 \ m/s$ Vertical component of velocity

$$v_y = 25 \sin 60^\circ = 12.5\sqrt{3} \ m/s$$

Tim to over 50 m distance $t = \frac{50}{12.5} = 4 \sec t$

The vertical height *y* is given by

$$y = v_y t - \frac{1}{2}gt^2 = 12.5\sqrt{3} \times 4 - \frac{1}{2} \times 9.8 \times 16$$
$$= 8.2 m$$

34 **(b)**

Maximum height of projectile, $h_0 = \frac{u^2 \sin^2 \theta}{2g}$

$$\therefore h_0 = \frac{(10)^2 \times \sin^2 30^\circ}{2 \times 10} = \frac{5}{4} = 1.25 m$$

Time for attaining maximum height , $t = \underline{u \sin \theta}$

$$\therefore t = \frac{10 \times \sin 30^{\circ}}{10} = 0.5 \sec$$

∴ Distance of vertical fall in 0.5 sec, $S = \frac{1}{2}gt^2$

$$\Rightarrow S = \frac{1}{2} \times 10 \times (0.5)^2 = 1.25m$$

 \therefore Height of second ball = 1.25 + 1.25 = 2.50m

35 **(c)**

Change in momentum of the ball = $mv \sin \theta - (-mv \sin \theta)$

$$= 2mv\sin\theta = 2mgv\frac{\sin\theta}{g} = mg \times \frac{2v\sin\theta}{g}$$

= weight of the ball \times total time of flight

36 **(b)**

Horizontal distance travelled by the bomb $S = u \times t$

$$= 200 \times \sqrt{\frac{2h}{g}} = 200 \times \sqrt{\frac{2 \times 8 \times 10^3}{9.8}}$$
$$= 8.081 \text{ km}$$

37 **(a)**

If the horizontal range is the same then the angle of projection of an object is θ or $(90^{\circ} - \theta)$ with the horizontal direction. So, the angle of projection of first particle is θ and the other particle is $(90^{\circ} - \theta)$

$$t_{1} = \frac{2u\sin\theta}{g}$$

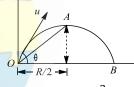
$$t_{2} = \frac{2u\sin\theta(90^{\circ} - \theta)}{g}$$

$$t_{2} = \frac{2u\cos\theta}{g}$$

$$\therefore t_{1}t_{2} = \frac{2u\sin\theta}{g} \cdot \frac{2u\cos\theta}{g}$$

$$t_{1}t_{2} = \frac{2u^{2}\sin2\theta}{g^{2}}$$
or
$$t_{1}t_{2} = \frac{2R}{g} \quad \left(\because R = \frac{u^{2}\sin2\theta}{g}\right)$$

38 **(b)**


Computing the given equation with

$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}, \text{ we get}$$

39 **(c)**

40 **(b)**

Refer figure are when projectile is at A, then

$$OC = \frac{R}{2} = \frac{1}{2} \frac{u^2}{g} \sin 2\theta$$

$$= \frac{1}{2} \times \frac{(20\sqrt{2})^2}{10} \sin 2 \times 45^\circ$$

= 40 m

$$AC = H = \frac{u^2 \sin^2 \theta}{2g} = \frac{(20\sqrt{2})^2}{2 \times 10} \sin^2 45^\circ$$

∴ Displacement,
$$OA = \sqrt{OC^2 + CA^2} = \sqrt{40^2 + 20^2}$$

Time of projectile from *O* to *A*

$$= \frac{1}{2} \left(\frac{2u \sin \theta}{g} \right) = \frac{u \sin \theta}{2g} = \frac{\left(20\sqrt{2} \right) \sin 45^{\circ}}{10}$$
$$= 2s$$

∴ Average velocity =
$$\frac{\text{displacement}}{\text{time}}$$

= $\frac{\sqrt{40^2 + 20^2}}{2}$ = $10\sqrt{5}$ ms⁻¹

41 (a)

$$v' = v_0 \cos \theta$$

$$\frac{v_0}{2} = v_0 \cos \theta$$

$$\cos \theta = \frac{1}{2}$$
$$\theta = 60^{\circ}$$

42 **(c)**

In uniform circular motion tangential acceleration remains zero but magnitude of radial acceleration remains constant.

43 **(a)**

$$H = \frac{u^2 \sin^2 \theta}{2g} \text{ and } T = \frac{2u \sin \theta}{g}$$
So $\frac{H}{T^2} = \frac{u^2 \sin^2 \theta / 2g}{4u^2 \sin^2 \theta / g^2} = \frac{g}{8} = \frac{5}{4}$

44 **(c)**

As time periods are equal therefore ration of angular speeds will be one. $\omega = \frac{2\pi}{T}$

45 **(c)**

K. E. = $\frac{1}{2}mv^2$. Which is scalar, so it remains constant

46 **(b)**

$$x = (u\cos\theta)t = 6$$
$$u\cos\theta = \frac{x}{t} = 6$$

$$y = (u\sin\theta)t = -\frac{1}{2}gt^2$$
$$y = 8t - 5t^2 \Rightarrow u\sin\theta = 8$$
$$y = 10\text{m/s}$$

47 (a)

$$\omega = \frac{v}{r} = \frac{100}{100} = 1 \, rad/s$$

48 **(d)**

In complete revolution total displacement is zero so average velocity is zero

49 **(d)**

At 45°,
$$v_x = v_y$$

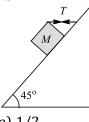
or $u_x = u_y - gt$

$$\therefore t = \frac{u_y - u_x}{g}$$

$$= \frac{40(\sin 60^\circ - \sin 30^\circ)}{9.8} = 1.5 \text{ s}$$

50 **(b)**

The two angles of projection are clearly θ and $(90^{\circ} - \theta)$


$$T_1 = \frac{2v\sin\theta}{g} \quad \text{and} \quad T_2 = \frac{2v\sin(90^\circ - \theta)}{g}$$
$$T_1T_2 = \frac{2(v)^2(2\sin\theta\cos\theta)}{g\times g} = \frac{2R}{g}$$

NEWTON'S APPLE

Laws of Motion

A block of mass 15 kg is resting on a rough inclined plane as shown in figure. The block is tied by a 1. horizontal string which has a tension of 50 N. The coefficient of friction between the surfaces of contact is $(g = 10 \text{ ms}^{-2})$

a) 1/2

b) 3/4

c) 2/3

Consider the following statement. When jumping from some height, you should bend your knees as you 2. come to rest instead of keeping your legs stiff. Which of the following relations can be useful in explaining the statement?

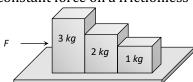
a)
$$\Delta \mathbf{p}_1 = -\Delta \mathbf{p}_2$$

c) $\mathbf{F} \Delta t = m \Delta \mathbf{v}$

- b) $\Delta E = -\Delta (PE + KE) = 0$

d) $\Delta x \propto \Delta F$ Where symbols have their usual meaning

A body takes time t to reach the bottom of an inclined plane of angle θ with the horizontal. If the plane is 3. made rough, time taken now is 2t. The coefficient of the friction of the rough surface is

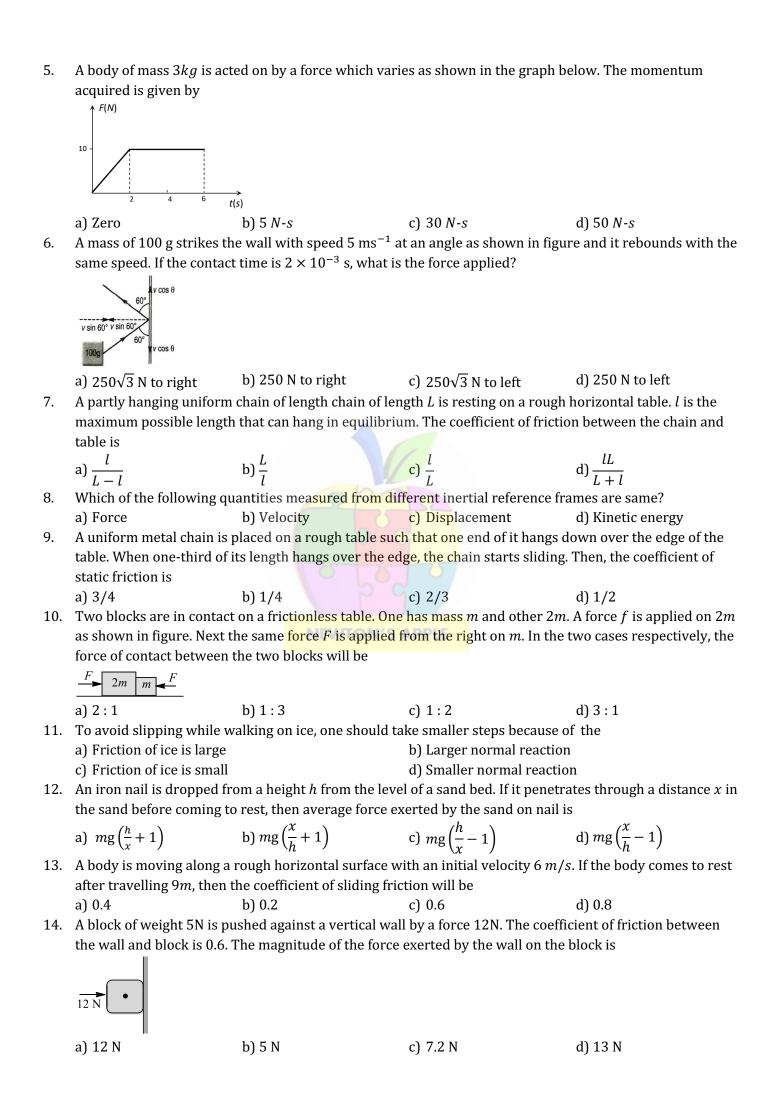

a)
$$\frac{3}{4} \tan \theta$$

b) $\frac{2}{3} \tan \theta$

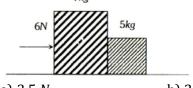
c) $\frac{1}{4} \tan \theta$

d) $\frac{1}{2} \tan \theta$

Consider the following statements about the blocks shown in the diagram that are being pushed by a 4. constant force on a frictionless table

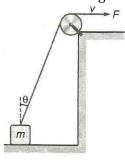


A. All blocks move with the same acceleration


B. The net force on each block is the same

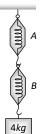
Which of these statements are/is correct

- a) A only
- b) B only
- c) Both A and B
- d) Neither A nor B



15. Two block of masses 7 kg and 5 kg are placed in contact with each other on a smooth surface. If a force of 6 N is applied on the heavier mass, the force on the lighter mass is

- a) 3.5 N b) 2.5 N
- c) 7 N

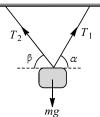

- d) 5 N
- 16. A block is dragged on a smooth horizontal plane with the help of a light rope which moves with a velocity v as shown in figure. The horizontal velocity of the block is

a) v

- b) $v \sin \theta$

- 17. A block of mass 4 kg is suspended through two light spring balances A and B. Then A and B, Then A and B will read respectively

- a) 4 kg and zero kg
- b) Zero kg and 4 kg
- c) 4 kg and 4 kg
- d) 2 kg and 2 kg
- 18. A particle is moving with a consta<mark>nt speed along a straight line path. A force is not required to</mark>
 - a) Increase its speed

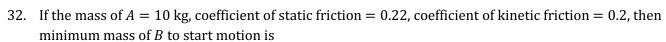

b) Decrease the momentum

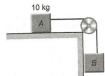
c) Change in direction

- d) Keep it moving with uniform velocity
- 19. The linear momentum of a particle varies with time t as $p = a + bt + ct^2$

Which of the following statements is correct?

- a) Force varies with time in a quadratic manner
- b) Force is time-dependent
- c) The velocity of the particle is proportional to time
- d) The displacement of the particle is proportional to t
- 20. A body of mass m is suspended by two strings making angle α and β with the horizontal as shown in figure. Tensions in the two strings are


a)
$$T_1 = \frac{mg\cos\beta}{\sin(\alpha + \beta)} = T_2$$


a)
$$T_1 = \frac{mg\cos\beta}{\sin(\alpha+\beta)} = T_2$$

c) $T_1 = \frac{mg\cos\beta}{\sin(\alpha+\beta)}$; $T_2 = \frac{mg\cos\alpha}{\sin(\alpha+\beta)}$

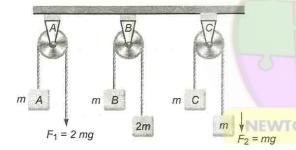
b)
$$T_1 = \frac{mg \sin \beta}{\sin(\alpha + \beta)} = T_2$$

d) None of the above

21.				in succession and are placed n the string between m_2 and		
		b) $\frac{m_3}{m_1 + m_2 + m_3} T$	c) $\frac{m_1 + m_2}{m_1 + m_2 + m_3} T$	d) $\frac{m_2 + m_3}{m_1 + m_2 + m_3} T$		
22.		-	es, two of which of mass M and $4 m/s$ respectively. T	/4 each are thrown off in he third piece will be thrown		
	a) 1.5 <i>m/s</i>	b) 2.0 <i>m/s</i>	c) 2.5 <i>m/s</i>	d) 3.0 <i>m/s</i>		
23.	A nucleus disintegrates their nuclear sizes will l	-	nich have their velocities in	the ratio 2:1. The ratio of		
	a) 2 ^{1/3} :1	b) 1: 3 ^{1/2}	c) 3 ^{1/2} :1	d) 1: 2 ^{1/3}		
24.		wn a rope. The breaking l should fireman slide dowr		weight of the man. With what		
	_			σ		
	a) $\frac{g}{4}$	b) $\frac{g}{3}$	c) $\frac{26}{3}$	d) $\frac{g}{6}$		
25.	The rate of mass of the	gas emitted from rear of a	rocket is initially $0.1 kg/s$	ec. If the speed of the gas		
			$\frac{1}{\text{rocket}}$ is 2 kg , then the ac			
	m/sec^2 is					
	a) 5	b) 5.2	c) 2.5	d) 25		
26.	Refer to the system sho	wn in figure. The ratio of t				
		b) $\frac{m_2}{m_1 + m_2}$				
	m_1	m_2	m_1	d) $\frac{m_2}{m_1}$		
	$\frac{a_1}{m_1+m_2}$	$\frac{m_1 + m_2}{m_1 + m_2}$	m_2	$\frac{\mathrm{d}J}{m_1}$		
27.	A block is kept on an inc	clined plan <mark>e of inclination</mark>	<mark>θ and length <i>l</i>. The velocit</mark>	y of particle at the bottom of		
	incline is (the coefficient of friction is μ)					
	a) $\sqrt{2gl(\mu\cos\theta-\sin\theta)}$		b) $\sqrt{2gl(\sin\theta - \mu\cos\theta)}$	$\overline{\Theta)}$		
	c) $\sqrt{2gl(\sin\theta + \mu\cos\theta)}$	_)	d) $\sqrt{2gl(\cos\theta - \mu \sin\theta)}$	$\overline{\theta})$		
28.	A gun fires bullet each of the number of bullets fi	-	f 10 ms ⁻¹ by exerting a co	nstant force of 5 g weight. Then		
	$(Take g = 10 ms^{-2})$					
	a) 50	b) 5	c) 10	d) 25		
29.	A block at rest slides do	wn a smooth inclined plar	ne which makes an angle 6	0° with the vertical and it		
	reaches the ground in t	seconds. Another block i	s dropped vertically from t	the same point and reaches the		
	ground in t_2 seconds.					
	Then the ratio of t_1 : t_2	S				
	a) 1:2	b) 2: 1	c) 1:3	d) 1: $\sqrt{2}$		
30.	When two surfaces are	coated with a lubricant, th	ien they			
	a) Stick to each other	b) Slide upon each oth	er c) Roll upon each othe	er d) None of these		
31.	A rope of length L is pul	led by a constant force F .	What is the tension in the	rope at a distance x from the		
	end where the force is a					
	a) $\frac{FL}{x}$	b) $\frac{F(L-x)}{I}$	c) $\frac{FL}{L-r}$	d) $\frac{Fx}{L-x}$		
	x	L	L-x	L-x		

a) 2 kg

- b) 2.2 kg
- c) 4.8 kg
- d) 3.4 kg

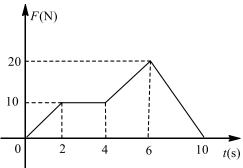

- 33. Impulse is
 - a) A scalar

- b) Equal to change in the momentum of a body
- c) Equal to rate of change of momentum of a body
- d) A force
- 34. A bullet is fired from a gun. The force on the bullet is given by $F = 600 2 \times 10^5 t$, where F is in *newtons* and *t* in seconds. The force on the bullet becomes zero as soon as it leaves the barrel. What is the average impulse imparted to the bullet
 - a) 9 Ns

b) Zero

- c) 0.9 Ns
- d) 1.8 Ns
- 35. A given object taken n times as much time to slide down a 45° rough incline as it takes to slide down a perfectly smooth 45° incline. The coefficient of kinetic friction between the object and the incline is given
 - a) $(1 \frac{1}{n^2})$
- b) $\frac{1}{1-n^2}$
- c) $\left(1-\frac{1}{n^2}\right)$
- d) $\sqrt{\frac{1}{1-n^2}}$
- 36. In figure, the blocks A, B and C each of mass m have acceleration a_1 , a_2 and a_3 respectively. F_1 and F_2 are external forces of magnitude 2 mg and mg respectively.

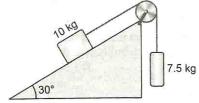
Then

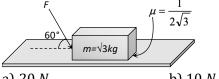


- a) $a_1 = a_2 = a_3$
- b) $a_1 > a_3 > a_2$
- c) $a_1 = a_2, a_2 = a_3$ d) $a_1 = a_2, a_1 = a_3$

- 37. Formula for true force is
 - a) F = ma
- b) $F = \frac{mdv}{dt}$
- d) $F = \frac{md^2x}{dt^2}$
- 38. A body of mass m collides against a wall with a velocity v and rebounds with the same speed. Its change of momentum is
 - a) 2 mv

b) mv

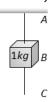

- c) -mv
- d) Zero
- 39. A particle of mass 2 kg is initially at rest. A force acts on it whose magnitude changes with time. The forcetime graph is shown below


The velocity of the particle after 10 s is

- a) 20 ms^{-1}
- b) 10 ms^{-1}
- c) 75 ms^{-1}
- d) 50 ms^{-1}

40. The acceleration of the system shown in figure is

- c) $\frac{14.5}{17.5}$ g
- 41. If μ_s , μ_k and μ_r are coefficients of static friction, sliding friction and rolling friction, then
 - a) $\mu_{s} < \mu_{k} < \mu_{r}$
- b) $\mu_k < \mu_r < \mu_s$
- c) $\mu_r < \mu_k < \mu_s$
- d) $\mu_r < \mu_k < \mu_s$
- 42. What is the maximum value of the force *F* such that the block shown in the arrangement, does not move



a) 20 N

b) 10 N

c) 12 N

- d) 15 N
- 43. A mass of 1 kg is suspended by a string A. Another string C is connected to its lower end (see figure). If a sudden jerk is given to *C*, then

- a) The portion AB of the string will break
- b) The portion BC of the string will break

c) None of the strings will break

- d) The mass will start rotating
- 44. Swimming is possible on account of
 - a) First law of motion

b) Second law of motion

c) Third law of motion

- d) Newton's law of gravitation
- 45. Three blocks of masses 2 kg, 3 kg and 5 kg are connected to each other with light string and are then placed on a frictionless surface as shown in the figure. The system is pulled by a force F = 10 N, then tension $T_1 =$

a) 1 N

b) 5 N

c) 8 N

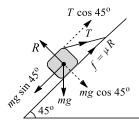
- d) 10 N
- 46. The time period of a simple pendulum measured inside a stationary lift is found to be *T*. If the lift starts accelerating upwards with an acceleration g/3, the time period is

- b) $T\sqrt{3}/2$
- c) $T/\sqrt{3}$
- d) T/3
- 47. Two masses M and M/2 are joined together by means of light inextensible string passed over a frictionless pulley as shown in the figure. When the bigger mass is released, the small one will ascend with an acceleration of

d) g

- 48. When a body is stationary
 - a) There is no force acting on it

- b) The force acting on it is not in contact with it
- c) The combination of forces acting on it balances each other
- d) The body is in vacuum
- 49. A rocket of mass $100 \ kg$ burns $0.1 \ kg$ of fuel per sec. If velocity of exhaust gas is $1 \ km/sec$, then it lifts with an acceleration of
 - a) $1000 \, ms^{-2}$
- b) $100 \, ms^{-2}$
- c) $10 \, ms^{-2}$
- d) $1 ms^{-2}$
- 50. An object placed on an inclined plane starts sliding when the angle of incline becomes 30°. The coefficient of static friction between the object and the plane is
 - a) $\frac{1}{\sqrt{3}}$


b) √3

c) $\frac{1}{2}$

d) $\frac{\sqrt{3}}{2}$

Figure shows free body diagram of the block

For equilibrium, along the place

$$\mu R + T \cos 45^{\circ} = mg \sin 45^{\circ}$$

$$\mu R + \frac{T}{\sqrt{2}} = \frac{mg}{\sqrt{2}} \qquad \dots (i)$$

For equilibrium, in direction perpendicular to inclined plane,

$$R = T \sin 45^{\circ} = mg \cos 45^{\circ}$$

$$= \frac{T}{\sqrt{2}} + \frac{mg}{\sqrt{2}}$$

Put in Eq. (i), $\frac{\mu}{\sqrt{2}}(T + mg) = -\frac{1}{\sqrt{2}}(mg - T)$

$$\mu(50+15\times 10) = (15\times 10 - 50)$$

$$\mu = \frac{100}{200} = \frac{1}{2}$$

2 (0

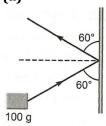
Change of momentum $\mathbf{F} \Delta t = m \Delta \mathbf{v}$

$$\Rightarrow \mathbf{F} = \frac{m\Delta \mathbf{v}}{t}$$

By doing so time of change in momentum

increases and impulsive force on knees decreases.

3 **(a**)


$$\mu = \tan\theta \left(1 - \frac{1}{n^2}\right) = \tan\theta \left(1 - \frac{1}{2^2}\right) = \frac{3}{4}\tan\theta$$

4 (a)

5 (d)

Momentum acquired = Area of force -time graph = $\frac{1}{2} \times (2) \times (10) + 4 \times 10 = 10 + 40 = 50 \text{ N-s}$

6 **(a)**

Change in the velocity = $v \sin \theta - (-v \sin \theta) =$

2 sin θ

Change in the momentum

 $\Delta p = 2 m v \sin \theta$

$$\therefore \text{ Force applied } F = \frac{\Delta p}{\Delta t}$$

$$= \frac{2 \times 100 \times 10^{-3} \times 5 \sin \theta 60^{\circ}}{2 \times 10^{-3}}$$

$$= 100 \times 5 \times \frac{\sqrt{3}}{2}$$

$$= 250\sqrt{3} \text{ N (To the right)}$$

7 (a)

If μ is the mass/length, then

Weight of hanging length = μlg

Weight of chain on table = $\mu(L-l)g$

$$R = \mu(L - l)g$$

$$f = \mu_s R = \mu_s \mu (L - l)g$$

Equating, $\mu_s \mu(L-l)g = \mu lg$ or $\mu_s = \frac{l}{l-l}$

8 (d)

Kinetic energy being a scalar quantity, hence measured from different inertial frame gives the same value, while the other three being vector quantities their values vary.

9 (d

Coefficent of friction $\mu = \frac{F}{R}$

$$=\frac{mg/3}{2mg/3}=\frac{1}{2}$$

10 **(c**

When force F is applied on 2m from left, contact force,

$$F_1 = \frac{m}{m+2m}F = \frac{F}{3}$$

When force F is applied on m from right, contact force

$$F_2 = \frac{2m}{m + 2m}F = \frac{2F}{3}$$

11 **(c)**

12 **(a)**

The nail has fallen through a total vertical distance of (h + x). Hence loss in tis potential energy = mg(h + x). If average retarding force exerted by sand on nail is f, then work done W = -Fx

For equilibrium,

$$mg(h+x) = Fx$$
 or $F = mg\frac{h+x}{r} = mg\left(\frac{h}{r} + 1\right)$

We know $s = \frac{u^2}{2u \, a} : \mu = \frac{u^2}{2as} = \frac{(6)^2}{2 \times 10 \times 9} = 0.2$

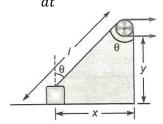
14 (d)

Wall applies 2 forces of the block (i) normal reaction, R=12 N, and (ii) frictional force, $f_2=m{\rm g}=5$ N tangentially upward

∴ Total force exerted by wall on block

$$F = \sqrt{N^2 + f_s^2} = \sqrt{(12)^2 + (5)^2} = 13N$$

15 **(b**)


Newton second law

$$F = ma \Rightarrow 6 = (7+5)a$$
; $a = \frac{1}{2} \frac{m}{s^2}$; $F' \to 5 \ kg$
Now, $F' = 5 \times \frac{1}{2} = 2.5 \ N$

16 **(c)**

From geometry $l^2 = x^2 + y^2$ but y is constant, hence differentiating, we have, $2l\frac{dl}{dt} = 2x\frac{dx}{dt}$

But $\frac{dl}{dt} = v$. Hence horizontal velocity of block, $v_x = \frac{dx}{dt}$

$$\Rightarrow lv = x. v_x \text{ or } v_x = \frac{l.v}{x} = \frac{v}{\sin \theta}$$

17 **(c)**

As the spring balances are massless therefore the reading of both balance should be equal

18 **(d**)

Particle will move with uniform velocity due to inertia

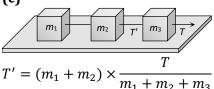
19 **(b**)

$$F = \frac{d}{dt}(p)$$

$$F = \frac{d}{dt}(a + bt + ct^{2}) \text{ or } F = b + 2ct$$

Clearly, the force is time-dependent

20 **(c)**


Applying Lami's theorem

$$\frac{T_1}{\sin(90^\circ + \beta)} = \frac{T_2}{\sin(90^\circ + \alpha)}$$

$$= \frac{mg}{\sin[180^\circ - (\alpha + \beta)]}$$
or
$$\frac{T_1}{\cos \beta} = \frac{T_2}{\cos \alpha} = \frac{mg}{\sin(\alpha + \beta)}$$

$$\therefore T_1 = \frac{mg \cos \beta}{\sin(\alpha + \beta)}; T_2 = \frac{mg \cos \alpha}{\sin(\alpha + \beta)}$$

21 **(c)**

22 (0

Momentum of one piece = $\frac{M}{4} \times 3$

Momentum of the other piece = $\frac{M}{4} \times 4$

$$\therefore \text{Resultant momentum} = \sqrt{\frac{9M^2}{16} + M^2} = \frac{5M}{4}$$

The third piece should also have the same momentum

Let its velocity be v, then

$$\frac{5M}{4} = \frac{M}{2} \times v \implies v = \frac{5}{2} = 2.5 \text{ m/sec}$$

23 (d)

law of conservation of momentum gives

$$\Rightarrow \frac{m_1}{m_2} = \frac{v_2}{v_1}$$
But, $m = \frac{4}{3}\pi r^3 \rho$

or $m \propto r^3$

$$\therefore \frac{m_1}{m_2} = \frac{r_1^3}{r_2^3} = \frac{v_2}{v_1}$$

$$\Rightarrow \frac{r_1}{r_2} = \left(\frac{1}{2}\right)^{1/3}$$

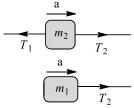
$\therefore r_1: r_2 = 1: 2^{1/3}$

24 **(b**

Tension is rope, $T < \text{Breaking load}, \frac{2}{3}mg$ $\therefore m(g - a) < \frac{2}{3}mg \text{ or } a > \frac{g}{3}$

25 **(c)**

$$\frac{dM}{dt} = 0.1 kg/s, v_{\text{gas}} = 50 \, m/s,$$

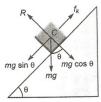

Mass of the rocket = 2 kg. Mv = constant

$$-v\frac{dM}{dt} + M\frac{dv}{dt} = 0 :: \frac{dv}{dt} = \frac{1}{M}v\frac{dM}{dt}$$

$$\Rightarrow Acceleration = \frac{1}{2} \times 50 \times 0.1 = 2.5 \, m/s^2$$

26 **(a)**

$$T_2 - T_1 = m_2 a$$



Dividing,
$$\frac{T_2 - T_1}{T_1} = \frac{m_2}{m_1}$$

or $\frac{T_2}{T_1} = \frac{m_2}{m_1} + 1 = \frac{m_2 + m_1}{m_1}$
or $\frac{T_2}{T_2} = \frac{m_1}{m_1}$

27 **(b**)

The various forces acting on the block are as shown

From Newton's law

$$mg \sin \theta - f = ma \dots (i)$$

Where f is frictional force and a the acceleration downwards.

Since, there is no motion perpendicular to surface, we have

$$R - mg\cos\theta = 0$$

$$\Rightarrow R = mg \cos \theta \dots (ii)$$

Also,
$$f = \mu R = \mu mg \cos \theta$$

Putting the value in Eq. (i) we get

$$mg \sin \theta - \mu \, mg \cos \theta = ma$$

$$\Rightarrow a = g \sin \theta - \mu g \cos \theta$$

Now, velocity at bottom

$$v^2 = u^2 - 2as$$

Since,
$$v = 0$$

$$\therefore u = \sqrt{2as}$$

Given,
$$s = l$$
, $a = g \sin \theta - g\mu \cos \theta$

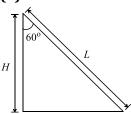
$$\therefore u = \sqrt{2l(g\sin\theta - g\mu\cos\theta)}$$

$$u = \sqrt{2gl(\sin\theta - \mu\cos\theta)}$$

28 **(b)**

Mass of each bullet(m) = 1 g = 0.001 kg Velocity of bullet (v) = 10 ms⁻¹ Applied force (F) = 5 g-wt.

$$= \frac{5}{1000} \times 10 \text{ N}$$
$$= 0.05 \text{ N}$$


Let *n* bullets are fired per second, then

Force= rate of change of linear momentum *ie*,
$$F = n \times mv$$

$$n = \frac{F}{mv}$$

$$= \frac{0.05}{0.001 \times 10} = 5$$

29 **(b)**

Let *L* be the length and *H* be height of the inclined plane respectively

Acceleration of the block slide down the smooth incline plane is

$$a = g \cos 60^{\circ}$$

:
$$L = \frac{1}{2}g\cos 60^{\circ} t_1^2 \quad [:: u = 0] \quad ...(i)$$

Acceleration of another block dropped vertically down from the same inclined plane is

$$a = g$$

$$\therefore H = \frac{1}{2}at_2^2 = \frac{1}{2}gt_2^2 \quad [\because u = 0]$$

From figure,

$$\cos 60^{\circ} = \frac{H}{L} \Rightarrow H = L \cos 60^{\circ}$$

$$\therefore L\cos 60^{\circ} = \frac{1}{2}gt_2^2 \quad ...(ii)$$

Divide (i) by (ii), we get

$$\frac{t_1^2 \cos 60^\circ}{t_2^2} = \frac{1}{\cos 60^\circ}$$

$$\frac{t_1^2}{t_2^2} = \frac{1}{\cos^2 60^\circ} = \frac{4}{1} \Rightarrow \frac{t_1}{t_2} = \frac{2}{1}$$

30 **(b)**

Surfaces always slide over each other

- 31 **(b**)
- 32 **(b)**

Let the minimum mass of B is M_B . Force applied by it $F = M_B g$ Friction force on block A

$$f = \mu M_A g$$

For motion to start

$$M_B g = \mu M_A g$$

$$M_B = 0.22 \times 10$$

$$= 2.2 \text{ kg}$$

33 **(b)**

Impulse is given by the product of force and time. Form Newton's second law

$$F = ma = m\frac{\Delta v}{\Delta t}$$

$$\implies F\Delta t = m\Delta v$$

= change in the momentum of the body.

34 **(c)**

F =
$$600 - 2 \times 10^5 t = 0 \Rightarrow t = 3 \times 10^{-3} \text{ sec}$$

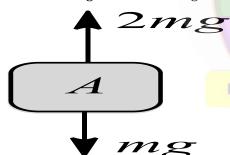
Impulse $I = \int_0^t F dt = \int_0^{3 \times 10^{-3}} (600 - 2 \times 10^5 t) dt$
= $[600t - 10^5 t^2]_0^{3 \times 10^{-3}} = 0.9 \text{ N} \times \text{sec}$

35 **(a)**

$$\mu = \tan \theta \left(1 - \frac{1}{n^2} \right) = 1 - \frac{1}{n^2} \text{ [As } \theta = 45^\circ \text{]}$$

36 **(b)**

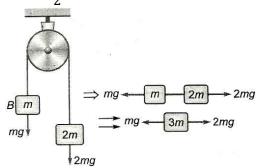
For
$$A$$
, $T = f = 2mg$


$$2mg - mg = ma_1$$

$$\therefore a_1 = g$$

For B,

From force diagram shown in figure,


$$2mg - mg = 3ma_2$$

$$a_2 = \frac{g}{3}$$

For C,

$$\therefore 2mg - mg = 2ma_3$$

$$\therefore a_3 = \frac{g}{2}$$

So, $a_1 > a_3 > a_2$

37 **(**a

According to Newton's second law:

Force = rate of change of linear momentum

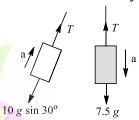
38 **(a)**

$$\Delta P = p_i - p_f = mv - (-mv) = 2 mv$$

39 **(d)**

Are under the F-t cure=change in momentum or $\frac{1}{2} \times 2 \times (10) + 2 \times 10 + \frac{1}{2} (10 + 20) \times 2$

$$+\frac{1}{2} \times 4 \times 20 = m(v-u)$$


or
$$10 + 20 + 30 + 40 = 2(v - 0)$$

or
$$100 = 2v$$

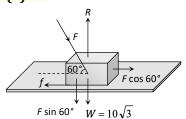
or
$$v = 50 \text{ ms}^{-1}$$

40 **(d)**

Refer to the free-body diagrams

 $T - 10g \sin 30^\circ = 10a$ or T - 5g = 10a

Again,
$$7.5 - T = 7.5\alpha$$


Adding,
$$2.5g = 17.5\alpha$$

or
$$\alpha = \frac{25g}{175} = \frac{g}{7}$$

41 (c)

NEWTON'

$$f = \mu R \Rightarrow F \cos 60^{\circ} = \mu (W + F \sin 60^{\circ})$$

Substituting
$$\mu = \frac{1}{2\sqrt{3}}$$
 & $W = 10\sqrt{3}$

We get F = 20 N

43 **(b)**

When a sudden jerk is given to \mathcal{C} , an impulsive tension exceeding the breaking tension develops in \mathcal{C} first, which breaks before this impulse can reach \mathcal{A} as a wave through block

44 (c)

Swimming is a result of pushing water in the opposite direction of the motion

45 ©

$$T_1 = \left(\frac{m_2 + m_3}{m_1 + m_2 + m_3}\right)g = \frac{3+5}{2+3+5} \times 10 = 8 N$$

$$T = 2\pi \sqrt{\frac{l}{g}} \text{ and } T' = 2\pi \sqrt{\frac{l}{4g/3}}$$

$$[\text{As } g' = g + a = g + \frac{g}{3} = \frac{4g}{3}]$$

$$\therefore T' = \frac{\sqrt{3}}{2}T$$

47 **(a)**

Acceleration,
$$a = \frac{M_1 - M_2}{M_1 + M_2}g$$

$$= \frac{M - \frac{M}{2}}{M + \frac{M}{2}}g = \frac{\frac{M}{2}}{\frac{3M}{2}}g = \frac{g}{3}$$

$$\frac{dm}{dt} = 0.1 \, kg \, / \, \text{sec}; \, \text{Mass of the rocket} = \, 100 \, kg$$

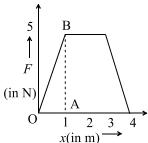
$$v = 1 \, km/\text{sec} = 1000 \, m/\text{sec}$$

$$F = \frac{d(mv)}{dt} = m \frac{dv}{dt} - v \frac{dm}{dt} = 0 \text{ as the mass is}$$

$$\text{decreasing}$$

$$100a - 1000 \times 0.1 = 0$$

 $a = +1 \, m/s^2$



Work, Energy and Power

	RED ZONE					
1.	The decrease in the pote a) 968 <i>J</i>	ential energy of a ball of mas b) 98 <i>J</i>	ss 20 kg which falls from a c) 1980 J	height of 50 <i>cm</i> is		
2.	The potential energy of a	a certain spring when streto	ched through a distance 'S'	is 10 <i>joule</i> . The amount of		
	work (in joule) that mus	t be done on this spring to	s <mark>tretc</mark> h it through an additi	onal distance 'S' will be		
	a) 30	b) 40	c) 10	d) 20		
3.	If the kinetic energy of a	body is increased 2 times,	its momentum will			
	a) Half	b) Remain unchanged	c) Be doubled	d) increase $\sqrt{2}$ times		
4.	Two putty balls of equal	mass moving with equal ve	<mark>locity in m</mark> utually perpend	icular directions, stick		
	together after collision. I	If the balls were initia <mark>lly mo</mark>	<mark>ving with</mark> a velocity of 45√	$\overline{2} ms^{-1}$ each, the velocity of		
	their combined after coll	lision is				
	a) $45\sqrt{2} \ ms^{-1}$	b) 45 ms ⁻¹	c) 90 ms ⁻¹	d) $22.5\sqrt{2} \ ms^{-1}$		
5.	A man does a given amo	unt of wo <mark>rk in 10 s. Anothe</mark> r	<mark>r man does t</mark> he same amour	nt of work in 20 s. The ratio		
	of the output power of fi	rst man t <mark>o the second man</mark>	isAPPLE			
	a) 1	b) $\frac{1}{2}$	c) $\frac{2}{1}$	d) None of these		
_		4	1			
6.			wire is $2k$. When both the	wires are stretched through		
	same distance, then the		> x.x	D *** 0 #***		
_	, , ,	b) $W_2 = 2W_1$	·	d) $W_2 = 0.5W_1$		
7.	•	to two pieces with unequal	mass			
	a) Both of them have equ		-11-			
	-	ong a same line with unequ	ai speeds			
	c) Sum of their moments	um is non zero erent lines with different sp	ands			
8.		d through a certain height b		cy is 90% the energy is		
0.		v released, its KE on hitting	-	cy is 30%, the energy is		
	a) 5000 J. II the mass is not	b) 4500 J	c) 4000 J	d) 5500 J		
9.		* *	, ,	ntal. Power on the block due		
,.	to the gravitational force		Sie of oo above the normal	neam 1 o wor on the brook due		
	a) 200 W	b) $100\sqrt{3} W$	c) 50 W	d) Zero		
10.	-		-	nd leaves it with a velocity of		
10.		t length of water in the pipe		_		
	a) 800 W	b) 400 W	c) 200 W	d) 100 W		
	<i>,</i>	<i>,</i>	,	,		

11.	constant $10.8\ Nm^{-1}$ and	are placed on a frictionle	ss horizontal surface.	re connected by spring of spring The block A was given an initial um compression of the spring
	a) 0.01 m	b) 0.02 m	c) 0.05 m	d) 0.03 m
12.	horizontal direction. If t	he object gains kinetic en	ergy of $1J$, the horizo	ct displaces it by 0.4m along the ntal component of the force is
13.	a) 1.5 <i>N</i> The hodies of masses 1	b) $2.5 N$	c) 3.5 N	d) 4.5 <i>N</i> f a tower. At a point 20 <i>cm</i> from the
15.	ground, both the bodies		gentry from the top o	ra tower. At a point 20 cm from the
	a) Momentum	b) Kinetic energy	c) Velocity	d) Total energy
14.	A bomb at rest explodes	s into 3 parts of the same	mass.	
	The momentum of the 2	parts is $-2p\hat{l}$ and $p\hat{j}$. The	e momentum of the th	nird part will have a magnitude of
	a) <i>p</i>	b) $\sqrt{3p}$	c) $p\sqrt{5}$	d) zero
15.	A particle of mass m mo	ving with horizontal spec	ed 6 <i>m/sec</i> as shown	in figure. If $m < < M$ than for one
	dimensional elastic colli	sion, the speed of lighter	p <mark>article</mark> after collision	n will be
	$u_1 = 6 \text{ m/s}$ M	$u_2 = 4 \text{ m/s}$		
	a) $2m/sec$ in original di	rection	h) 2m/sec onno	site to the original direction
	c) $4m/sec$ opposite to t		d) $4m/sec$ in ori	_
16.				y u with another particle of the same
		_	The second line was a second line with the second line was a	ove in directions making angles
	θ_1 and θ_2 respectively wi	ith the initial direction of	motion.	
	The sum of the angles θ			
4	a) 45°	b) 90° NEWTON		d) 180°
17.			-	en the motor stops. If it is just able to
		_	_	n the work done against friction
	a) 10 kJ	one by the friction) is [Ta b) 15 kJ	c) 17.5 kJ	d) 25 kJ
18.		*	, ,	gments of masses $1g$ and $3g$. The
		its is 6.4×10^4 <i>J</i> . What is	-	-
	a) $2.5 \times 10^4 J$	b) $3.5 \times 10^4 J$		d) 5.2 \times 10 ⁴ <i>J</i>
19.	If the heart pushes 1 cc	of blood in 1 s under pres	sure $20000Nm^{-2}$,the	e power of heart is
	a) 0.02 W	b) 400 W	c) $5 \times 10^{-10} \text{W}$	d) 0.2 W
20.				one third of its length is hanging
	·	-	acceleration due to gr	ravity, the work required to pull the
	hanging part on to the ta) 14 T 10	D 14 1 140
21	a) MgL	b) <i>MgL</i> /3	c) <i>MgL/</i> 9	d) $MgL/18$
21.			_	and a vertical circular path with the
	so that the mass comple		ie minimum velocity	of mass at the bottom of the circle,
	a) $\sqrt{4gl}$	b) $\sqrt{3gl}$	c) $\sqrt{5gl}$	d) \sqrt{gl}
22.			• =	ne final velocity of the system is
<i></i> .				
	a) $\frac{c}{a+b}$. b	b) $\frac{a}{a+c}$. b	c) $\frac{a+b}{c}$. a	d) $\frac{a+c}{a}$. b

- 23. A bomb of mass M at rest explodes into two fragments of masses m_1 and m_2 . The total energy released in the explosion is E. If E_1 and E_2 represent the energies carried by masses m_1 and m_2 respectively, then which of the following is correct?
 - a) $E_1 = \frac{m_2}{M}E$
- b) $E_1 = \frac{m_1}{m_2} E$
- $c) E_1 = \frac{m_1}{M} E$
- $d) E_1 = \frac{m_2}{m_1} E$
- 24. The force F acting on a particle moving in a straight line is shown in figure. What is the work done by the force on the particle in the 1st meter of the trajectory

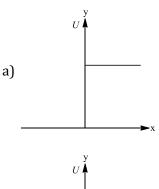
a) 5 J

b) 10 J

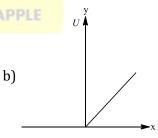
c) 15 J

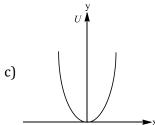
- d) 2.5 J
- 25. A position dependent force $F = 7 2x + 3x^2$ newton acts on a small body of mass 2 kg and displaces it from x = 0 to x = 5m. The work done in *joules* is
 - a) 70

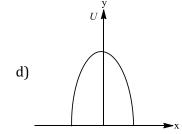
b) 270


c) 35

- d) 135
- 26. A body of mass 10 kg is moving on a horizontal surface by applying a force of 10 N in forward direction. If body moves with constant velocity, the work done by force of fiction for a displacement of 2m is
 - a) -20


- b) 10 J
- c) 20 J


d) -5


- 27. Which of the following statements is wrong?
 - a) KE of a body is independent of the direction of motion
 - b) In an elastic collision of two bodies ,the momentum and energy of each body is conserved
 - c) If two protons are brought towards each other the PE of the system decreases.
 - d) A body cannot have energy without momentum.
- 28. Which of the following graphs show variation of potential energy (U) with position x.


- 29. A ball is released from certain height. It loses 50% of its kinetic energy on striking the ground. It will attain a height again equal to
 - a) One fourth the initial height

b) Half the initial height

c) Three fourth initial height

d) None of these

A particle is projected at 60° to the horizontal with a kinetic energy K . The kinetic energy at the highest point is				
a) <i>K</i>	b) Zero	c) $\frac{K}{4}$	d) $\frac{K}{2}$	
with velocity 4 ms ⁻¹ .wha	t is the velocity with which	the 10 kg object hit the sec		
	-			
		ection. The work done by t	ins force during a	
		24a3 Pa2	d) None of those	
a) $\frac{2Aa^4}{3}$	b) $\frac{2Aa^{4}}{3} + 2Ca$	c) $\frac{2Aa^{4}}{3} + \frac{Ba}{2} + Ca$	uj None of these	
compresses it till the bloc	k is motionless. The kinetic	·		
10,000 N/m. The spring of	•			
a) 5.5 <i>cm</i>	b) 2.5 <i>cm</i>		d) 8.5 <i>cm</i>	
	_			
a) Momentum, kinetic en	ergy and temperature	b) Momentum but not kin	etic energy and	
		_		
c) Kinetic energy and tem momentum	perature but not	d) None of the above		
A force $\mathbf{F} = (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}})N \operatorname{dis}$	splaces the body by $s = (3)$	$(\hat{k} + 5\hat{k})$ m in 2 s. Power general	erated will be	
a) 11 W	b) 6 W	c) 22 W	d) 12 W	
			f the water in the well is 10	
a) 10 ³ J	b) 10 ⁴ J	c) 10 ⁵ J	d) 10 ⁶ J	
_	_		ry body of mass m_2 . They	
a) Increases	NEWION'S	b) Decreases but does not	become zero	
c) Remains same		d) Become zero		
An intense stream of water	er of cross-sectional area A	strikes a wall at an angle $ heta$	with the normal to the	
wall and returns back elas	stically. If the density of wa	ter is $ ho$ and its velocity is v	, then the force exerted in	
the wall will be				
θ				
		_		
•	•	, ,	d) $2Av\rho$	
	~			
B is	. ,		,	
a) 0.15 <i>m/sec</i>	b) 1.5 <i>m/sec</i>	c) -0.15 <i>m/sec</i>	d) None of the above	
	point is a) K A 10 kg object collides with velocity 4 ms^{-1} . what a) 4 ms^{-1} A force $F = Ay^2 + By + C$ displacement from $y = -1$ a) $\frac{2Aa^3}{3}$ A 2 kg block slides on a hard compresses it till the block 10,000 N/m . The spring of a) 5.5 cm Quantity/Quantities remains a) Momentum, kinetic energy and term momentum A force $\mathbf{F} = (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}})N$ distantly \mathbf{K} and \mathbf{K} is moving a hand \mathbf{K} man, by working a hand \mathbf{K} me below the ground level a) \mathbf{K} and \mathbf{K} is moving get embedded. At the point a) Increases c) Remains same An intense stream of water wall and returns back elast the wall will be a) $2Av\rho\cos\theta$ Two solid rubber balls A and directions with velocity of B is	point is a) K b) Zero A 10 kg object collides with stationary 5 kg object an with velocity 4 ms^{-1} . what is the velocity with which a) 4 ms^{-1} b) 6 ms^{-1} A force $F = Ay^2 + By + C$ acts on a body in the y -did displacement from $y = -a$ to $y = a$ is a) $\frac{2Aa^3}{3}$ b) $\frac{2Aa^3}{3} + 2Ca$ A 2 kg block slides on a horizontal floor with a speed compresses it till the block is motionless. The kinetic 10,000 N/m . The spring compresses by a) 5.5 cm b) 2.5 cm Quantity/Quantities remaining constant in a collision a) Momentum, kinetic energy and temperature c) Kinetic energy and temperature but not momentum A force $\mathbf{F} = (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 3\hat{\mathbf{j}}) \mathbf{N}$ displaces the body b	point is a) K b) Zero c) $\frac{K}{4}$ A 10 kg object collides with stationary 5 kg object and after collision they stick with velocity 4 ms^{-1} . what is the velocity with which the 10 kg object hit the sec a) 4 ms^{-1} b) 6 ms^{-1} c) 10 ms^{-1} A force $F = Ay^2 + By + C$ acts on a body in the y -direction. The work done by the displacement from $y = -a$ to $y = a$ is a) $\frac{2Aa^3}{3}$ b) $\frac{2Aa^3}{3} + 2Ca$ c) $\frac{2Aa^3}{3} + \frac{Ba^2}{2} + Ca$ A $2 kg$ block slides on a horizontal floor with a speed of 4 m/s . It strikes a unconcompresses it till the block is motionless. The kinetic friction force is 15 N and strictly 10.000 N/m . The spring compresses by a) 5.5 cm b) 2.5 cm c) 11.0 cm Quantity/Quantities remaining constant in a collision is/are a) Momentum, kinetic energy and temperature by Momentum but not kin temperature c) Kinetic energy and temperature but not momentum A force $\mathbf{F} = (2\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \mathbf{N}$ displaces the body by $\mathbf{s} = (3\hat{\mathbf{j}} + 5\hat{\mathbf{k}}) \mathbf{m}$ in 2 s . Power gence a) 11 W b) 6 W c) 22 W A man, by working a hand pump fixed to a well, pumps out 10 m^3 water in 1 s . In the blow the ground level, then the work done by the man is $(\mathbf{g} = 10 \text{ ms}^{-2})$ a) $10^3 \mathbf{j}$ b) $10^4 \mathbf{j}$ c) $10^5 \mathbf{j}$ A body of mass m_1 is moving with a velocity V . It collides with another stational get embedded. At the point of collision, the velocity of the system a) Increases b) Decreases but does not c) Remains same d) Become zero An intense stream of water of cross-sectional area A strikes a wall at an angle θ wall and returns back elastically. If the density of water is ρ and its velocity is v the wall will be	

49. A body of mass m moving with velocity v collides head on another body of mass 2m which is initially at rest. The ratio of KE of colliding body before and after collision body before and after collision will be

a) 1:1

b) 2:1

c) 4:1

d) 9:1

50.	A ball moving with velocity 2 m/s. Comides head on with another stationary ball of double the mass. If the					
	coefficient of restitution		velocities (in m/s) after collis			
	a) 0, 2	b) 0, 1	c) 1, 1	d) 1, 0.5		
51.	When a force is applie	d on a moving bod	y, its motion is retarded. Then	the work done is		
	a) Positive	b) Negative	c) Zero	d) Positive and negati	ive	
52.	Four particles given, h	ave same moment	um. Which has maximum kine	ic energy		
	a) Proton	b) Electron	c) Deutron	d) α - particles		
53.	The block of mass M n	noving on the fricti	onless horizontal surface collid	les with the spring of spring		
	constant k and compre	esses it by length L	. The maximum momentum of	the block after collides is		
	Property of the second					
	k					
	00000					
	a) \sqrt{MkL}	b) $\frac{kL^2}{2M}$	c) Zero	d) $\frac{ML^2}{L}$		
	aj vinkl	$\frac{1}{2M}$		$\frac{u_j}{k}$		
54.	In which case does the potential energy decrease					
	a) On compressing a spring		b) On stretching a	b) On stretching a spring		
	c) On moving a body a	ıgainst gravitationa	al force d) On the rising o	f an air bubble in water		
55.	An object of mass m is tied to a string of length L and a variable horizontal force is applied on it which					
	starts at zero and gradually increases until the string makes an angel $\boldsymbol{\theta}$ with the vertical. Work done by the					
	force <i>F</i> is					
	0					
	0		2 12 2			
			20 90			
	C \longrightarrow F					
	B					
	Â					
	a) $mgL(1-\sin\theta)$	b) mgL	c) $mgL(1-\cos\theta)$, , , , ,		
56.				bund to a height h_2 . The change	in	
	momentum of the ball	on striking the gro	ound is			
	a) $mg(h_1 - h_2)$	NE	b) $mg(\sqrt{2gh_1} + d)$			
	c) $m\sqrt{2g(h_1+h_2)}$		d) $m\sqrt{2g}(h_1 + h_2)$			
57.	A mass of $10 g$ moving	g with a velocity of	100 cm/s strikes a pendulum	bob of mass $10 g$. The two mas	ses	
	stick together. The ma	ximum height read	ched by the system now is (g =	$10 \ m/s^2$		
	a) Zero	b) 5 <i>cm</i>	c) 2.5 <i>cm</i>	d) 1.25 cm		
58.	A sphere of mass m m	oving with a consta	ant velocity u hits another stat	ionary sphere of the same mass	s. If <i>e</i>	

is the coefficient of restitution, then the ratio of the velocity of two spheres after collision will be

59. A particle falls from a height h upon a fixed horizontal plane and rebounds. If e is the coefficient of

60. **Statement I** Two particles moving in the same direction do not lose all their energy in a completely

Statement II Principle of conservation of momentum holds true for all kinds of collisions.

c) $\frac{h}{2} \left(\frac{1 - e^2}{1 + e^2} \right)$

a) Statement I is true, statement II is true, statement b) Statement I is true Statement II is true, Statement

d) $\frac{h}{2} \left(\frac{1 + e^2}{1 - e^2} \right)$

II is not correct explanation of statement I.

d) Statement I is true, Statement II is false.

restitution, the total distance travelled before rebounding has stopped is

b) $h\left(\frac{1-e^2}{1+e^2}\right)$

II is the correct explanation of statement I.

c) Statement I is false, Statement II is true.

a) $h\left(\frac{1+e^2}{1-e^2}\right)$

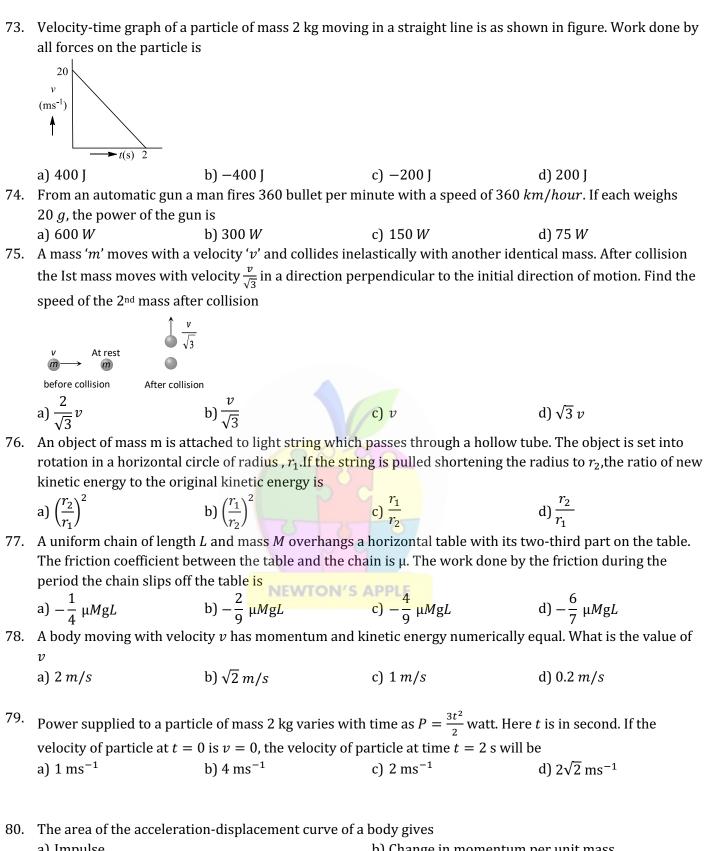
inelastic collision.

	a) $\frac{16}{25}$	b) $\frac{2}{5}$	c) $\frac{3}{5}$	d) $\frac{9}{25}$
63.	23	J	, then the kinetic energy of	23
	a) Less than that of the bu		b) More than that of the b	
	c) Same as that of the bull		d) Equal or less than that	
64.	In an inelastic collision, w		, 1	
	a) Kinetic energy	b) Momentum	c) Both (a) and (b)	d) Neither (a) nor (b)
65.	,		o a spring of spring constar	
	maximum distance the sp	_		
	a) 0.080 m	b) 0.20 m	c) 0.40 m	d) 0.10 m
66.	The energy which an e^- a	cquires when accelerated t	hrough a potential differen	ice of 1 volt is called
	a) 1 Joule	b) 1 <i>eV</i>	c) 1 <i>Erg</i>	d) 1 Watt
67.	Identify the wrong statem	nent		
	a) A body can have mome	entum without energy		
	b) A body can have energ	y without momentum		
	c) The momentum is cons	served in an <mark>ela</mark> sti <mark>c collisio</mark> i	1	
	d) Kinetic energy is not co	onserved in an inela <mark>stic coll</mark>	<mark>lision </mark>	
68.			<mark>position o</mark> f the particle as a	
	by $x = 3t - 4t^2 + t^3$, whe	ere x is in <i>metres</i> a <mark>nd t is i</mark> i	<mark>n seconds</mark> . The work done o	during the first 4 seconds is
	a) 5.28 <i>J</i>	b) 450 mJ	c) 190 mJ	d) 530 <i>mJ</i>
69.	A bucket tied to a string is	s lowered at a consta <mark>nt acc</mark> e	eleration of $\frac{g}{4}$. If the mass of	The bucket is m and is
	lowered by a distance d , t	he work <mark>done by the string</mark>	will be	
	a) $\frac{mgd}{4}$	b) $-\frac{3}{4}mgd$	4	d) $\frac{4}{3}$ mgd
	4	$-\frac{1}{4}mga$	$-\frac{1}{3}mga$	$\frac{a_1 - mga}{3}$
70.	A body of mass 3 kg acted	upon by a constant force is	s displaced by S metre, give	en by relation $S = \frac{1}{3}t^2$,
		k done by the force in 2 sec		3
	a) $\frac{8}{3}$ J	b) $\frac{19}{5}$ J	c) $\frac{5}{19}$ J	d) $\frac{3}{8}$ J
	$\frac{a}{3}$	b) J	c) 19 J	$\frac{a}{8}$
71.	A ball is dropped from a h	leight h on a floor of coeffic	ient of restitution e.The tot	cal distance covered by the
	ball just before second hit			
	a) $h(1-2e^2)$	b) $h(1+2e^2)$	c) $h(1+e^2)$	d) he^2
72.		-	radius R. A body slides dov	_
	which is it a height $h = 5$	<i>cm</i> . Maximum value of <i>R</i> for	or the body to successfully	complete the loop is
	A D			
	h 2R	c		
	\ E \			
	В			
	a) F am	b) $\frac{15}{4}$ cm	c) $\frac{10}{3}$ cm	d) 2 am
	a) 5 <i>cm</i>	$\frac{1}{4}$ cm	$\frac{c}{3}$ cm	d) 2 <i>cm</i>

61. Two springs A and B are identical but A is harder than $B(k_A > k_B)$. Let W_A and W_B represent the work

62. A rubber ball is dropped from a height of 5 m on a planet, where the acceleration due to gravity is not

known. On bouncing it rises to 1.8 m. The ball loses its velocity on bouncing by a factor of


these are stretched by equal forces, then which of the following is true

a) $W_A > W_B$ and $W'_A = W'_B$

c) $W_A > W_B$ and $W'_A > W'_B$

done when the springs are stretched through the same distance and W'_A and W'_B are the work done when

b) $W_A > W_B$ and $W'_A < W'_B$ d) $W_A < W_B$ and $W'_A < W'_B$

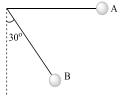
a) Impulse

b) Change in momentum per unit mass

c) Change in KE per unit mass

d) Total change in energy

81. A shell is fired from a cannon with velocity v m/sec at an angle θ with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed in m/sec of the other piece immediately after the explosion is


a) $3v\cos\theta$

b) $2v\cos\theta$

c) $\frac{3}{2}v\cos\theta$

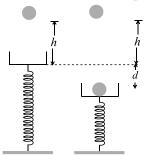
d) $\frac{\sqrt{3}}{2}v\cos\theta$

82. A simple pendulum is released from A as shown. If m and l represent the mass of the bob and length of the pendulum, the gain in kinetic energy at B is

a) $\frac{mgl}{2}$

b) $\frac{mgl}{\sqrt{2}}$

- c) $\frac{\sqrt{3}}{2}mgl$
- d) $\frac{\sqrt{2}}{3} mgl$
- 83. A body of mass 1 kg is thrown upwards with a velocity 20 m/s. It momentarily comes to rest after attaining a height of 18 m. How much energy is lost due to air friction $(g = 10 m/s^2)$
 - a) 20 J


b) 30 *J*

c) 40 J

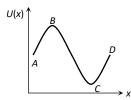
- d) 10
- 84. A bullet when fired at a target with velocity of 100 ms⁻¹ penetrates 1 m into it. If the bullet is fired at a similar target with a thickness 0.5m, then it will emerge from it with a velocity of
 - a) $50\sqrt{2} \text{ m/s}$
- b) $\frac{50}{\sqrt{2}}$ m/s
- c) 50 m/s
- d) 10 m/s
- 85. Two equal masses m_1 and m_2 moving along the same straight line with velocities +3 m/s and -5 m/s respectively collide elastically. Their velocities after the collision will be respectively
 - a) +4 m/s for both
- b) $-3 \, m/s$ and $+5 \, m/s$
- c) $-4 \, m/s$ and $+4 \, m/s$
- d) $-5 \, m/s$ and $+3 \, m/s$

- 86. When two bodies collide elastically, then
 - a) Kinetic energy of the system alone is conserved
 - b) Only momentum is conserved
 - c) Both energy and momentum are conserved
 - d) Neither energy nor momentum is conserved
- 87. Two balls at same temperature collide. What is conserved
 - a) Temperature
- b) Velocity
- c) Kinetic energy
- d) Momentum
- 88. The power of a water jet flowing through an orifice of radius r with velocity v is
 - a) Zero

- b) $500 \pi r^2 v^2$
- c) $500 \pi r^2 v^3$
- d) $\pi r^4 n$
- 89. A vertical spring with force constant *K* is fixed on a table. A ball of mass *m* at a height *h* above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance *d*. The net work done in the process is

a) $mg + (h + d) + \frac{1}{2}Kd^2$

b) $mg(h+d) - \frac{1}{2}Kd^2$


c) $mg(h-d) - \frac{1}{2}Kd^2$

- d) $mg(h-d) + \frac{1}{2}Kd^2$
- 90. A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement *x* is proportional to
 - a) x^2

b) e^x

c) x

- d) $\log_e x$
- 91. The potential energy of a particle varies with distance *x* as shown in the graph. The force acting on the particle is zero at

a) *C*

b) *B*

c) B and C

d) A and D

92. A rod of mass m and length l is made to stand at an angle of 60^{0} with the vertical. Potential energy of the rod in this position is

a) mgl

b) $\frac{mgl}{2}$

c) $\frac{mgl}{3}$

d) $\frac{mgl}{4}$

93. Two trolleys of mass m and 3m are connected by a spring. They were compressed and released once, they move off in opposite direction and comes to rest after covering distances S_1 and S_2 respectively. Assuming the coefficient of friction to be uniform, the ratio of distances S_1 : S_2 is

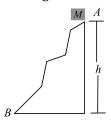
a) 1:9

b) 1:3

c) 3:1

d)9:1

94. The kinetic energy of a body becomes four times its initial value. The new momentum will be


a) Same as the initial value

b) Twice the initial value

c) Thrice the initial value

d) Half of its initial value

95. In the given curved road, if particle is released from *A* then

a) Kinetic energy at B must be mgh

c) Kinetic energy at B must be less than mgh

b) Kinetic energy at B may be zero

d) Kinetic energy at B must not be equal to zero

96. A stationary particle explodes into two particle of masses m_1 and m_2 which move in opposite directions with velocities v_1 and v_2 . The ratio of their kinetic energies E_1/E_2 is

a) m_1/m_2

b) 1

c) $m_1 v_2 / m_2 v_1$

d) m_2/m_1

97. Two bodies moving towards each other collide and move away in opposite directions. There is some rise in temperature of bodies because a part of the kinetic energy is converted into

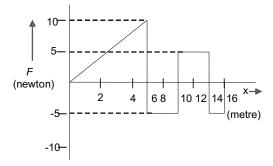
a) Heat energy

b) Electrical energy

c) Nuclear energy

d) Mechanical energy

98. An open knife edge of mass 'm' is dropped from a height 'h' on a wooden floor. If the blade penetrates upto the depth 'd' into the wood, the average resistance offered by the wood edge is

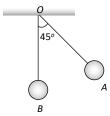

a) *mg*

b) $mg\left(1-\frac{h}{d}\right)$

c) $mg\left(1+\frac{h}{d}\right)$

d) $mg\left(1+\frac{h}{d}\right)^2$

99. A particle is acted upon by a force F which varies with position x as shown in figure. If the particle at x = 0 has kinetic energy of 25 J, then the kinetic energy of the particle at x = 16 m is


a) 45 J

b) 30 J

c) 70 J

d) 135J

100. The bob A simple pendulum is released when the string makes an angle of 45° with the vertical. It hits another bob B of the same material and same mass kept at rest on the table. If the collision is elastic

- a) Both *A* and *B* rise to the same height
- c) Both A and B move with the same velocity of A
- b) Both A and B come to rest at B
- d) $\frac{A}{A}$ comes to rest and $\frac{B}{A}$ moves with the velocity of

: HINTS AND SOLUTIONS :

$$\Delta U = mgh = 20 \times 9.8 \times 0.5 = 98 J$$

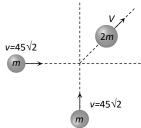
2

$$\frac{1}{2}kS^2 = 10 J$$
 [Given in the problem]

$$\frac{1}{2}k[(2S)^2 - (S)^2] = 3 \times \frac{1}{2}kS^2 = 3 \times 10 = 30J$$

(d) 3

Kinetic energy of particle $k = \frac{p_1^2}{2m}$


$$p_1^2 = 2mk'$$

When kinetic energy =2k

$$p_2^2 = 2m \times 2k, p_2^2 = 2p_1^2, p_2 = \sqrt{2p_1}$$

4 (b)

Initial momentum

$$\vec{P} = m45\sqrt{2}\,\hat{\imath} + m45\sqrt{2}\,\hat{\jmath}$$

$$\Rightarrow |\vec{P}| = m \times 90$$

Final momentum $2m \times V$

By conservation of momentum

$$2m \times V = m \times 90$$

$$\therefore V = 45 \, m/s$$

5 (c)

Given $t_1 = 10s$, $t_2 = 20$, $w_1 = w_2$

$$power = \frac{work \ done}{time}$$

or
$$\frac{p_1}{p_2} = \frac{w_1/t_1}{w_2/t_2}$$

$$\therefore \frac{p_1}{n_2} = \frac{t_2}{t_1} = \frac{2}{1}$$

6

$$W = \frac{1}{2}kx^2$$

If both wires are stretched through same distance

$$W \propto k$$
. As $k_2 = 2k_1$ so $W_2 = 2W_1$

7 (b)

8 (b) Because the efficiency of machine is 90%, hence, potential energy gained by the mass

$$=\frac{90}{100} \times \text{energy spend} = \frac{90}{100} \times 5000 = 4500 \text{ J}$$

When the mass is released now, gain in KE on hitting the ground

= Loss of potential energy

$$= 4500 J$$

9 (d)

$$P = v \cos \theta = mg v \cos 90^{\circ} = 0$$

10

Power =
$$Fv = v\left(\frac{m}{t}\right)v = v^2(\rho Av)$$

$$= \rho A v^3 = (100)(2)^3 = 800 W$$

11 (c)

As the block A moves with velocity with velocity $0.15 \, ms^{-1}$, it compresses the spring Which pushes B towards right. A goes on compressing the spring till the velocity acquired by B becomes equal to the velocity of A, i.e. 0.15 ms^{-1} . Let this velocity be v. Now, spring is in a state of maximum compression. Let x be the maximum compression at this stage.

-mmmm -- B

According to the law of conservation of linear momentum, we get

$$m_A u = (m_A + m_B)v$$

Or
$$v = \frac{m_A u}{m_A + m_B}$$

$$\frac{2 \times 0.15}{2+3} = 0.06 ms^{-1}$$

According to the law of conservation of energy

$$\frac{1}{2}m_A u^2 = \frac{1}{2}(m_A + m_B)V^2 + \frac{1}{2}kx^2$$

$$\frac{1}{2}m_A u^2 - \frac{1}{2}(m_A + m_B)v^2 = \frac{1}{2}kx^2$$

$$\frac{1}{2} \times 2 \times (0.15)^2 - \frac{1}{2}(2+3)(0.06)^2 = \frac{1}{2}kx^2$$

$$0.0225 - 0.009 = \frac{1}{2}kx^2$$

or
$$0.0135 = \frac{1}{2}kx^2$$

Or
$$x = \sqrt{\frac{0.0027}{k}} = \sqrt{\frac{0.0027}{10.8}} = 0.05m$$

12 **(b)**

Work done on the body = K.E. gained by the body $Fs \cos \theta = 1 \Rightarrow F \cos \theta = \frac{1}{s} = \frac{1}{0.4} = 2.5N$

13 **(c)**

Velocity of fall is independent of the mass of the falling body

14 **(c)**

Momentum of the third part will be equal to the resultant of momentum of two parts.

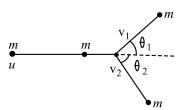
$$p_3 = \sqrt{p_1^2 + p_2^2}$$

$$p_3 = \sqrt{(-2p)^2 + p^2}$$

$$p_3 = p\sqrt{5}$$

15 (a)

u₁=6m/s


$$v_1 = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) u_1 + \frac{2m_2 u_2}{m_1 + m_2}$$

Substituting $m_1 = 0$, $v_1 = -u_1 + 2u_2$ $\Rightarrow v_1 = -6 + 2(4) = 2 \text{ m/s}$

i.e. the lighter particle will move in original direction with the speed of 2 m/s

16 **(b)**

Let particle with mass m, move with velocity u, and v_1 and v_2 be velocity after collision. Since , elastic collision is one in which the momentum is conserved , we have

 $\therefore mu = mv_1 \cos \theta_1 + mv_2 \cos \theta_2 \qquad \dots (i)$

In perpendicular direction

$$0 = mv_1 \sin \theta_2 - mv_2 \sin \theta_2 \qquad \dots (ii)$$

Also elastic collision occurs only if there is no conversion of kinetic energy into other from,

$$\begin{split} &\frac{1}{2}mu^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_2^2 \\ &u_2 = v_1^2 + v_2^2 \end{split} \qquad(iii)$$

Squaring Esq.(i) and (ii) and adding we get $m^2u^2=m^2(v_1\cos\theta_1+v_2\cos\theta_2)^2$

$$+m^2(v_1\sin\theta_1-v_2\sin\theta_2)^2$$

$$u^{2} = v_{1}^{2} + v_{2}^{2} + 2v_{1}v_{2}\cos\theta_{1}\cos\theta_{2}$$
$$-2v_{1}v_{2}\sin\theta_{1}\sin\theta_{2}$$

$$u^2 = v_1^2 + v_2^2 + 2v_1v_2\cos(\theta_1 + \theta_2)$$

Using Eq.(iii),we get

$$2v_1v_2\cos(\theta_1+\theta_2)=0$$

since
$$v_1 v_2 \neq 0$$

Hence
$$cos(\theta_1 + \theta_2) = 0$$

$$0r \theta_1 + \theta_2 = 90^{\circ}$$

When two identical particles collide elastically and obliquely,

One being at rest, then they fly off in mutually perpendicular directions.

17 **(c)**

$$1400 \times 10 \times 10 + W = \frac{1}{2} \times 15 \times 15$$

or $W = 700 \times 15 \times 15 - 1400 \times 10 \times 10$
or $W = 700(225 - 200)$ J
or $W = 700 \times 25$ J = 75.5 kJ

18 **(c)**

As the momentum of both fragments are equal therefore

$$\frac{E_1}{E_2} = \frac{m_2}{m_1} = \frac{3}{1}i.e., E_1 = 3E_2$$
 ...(i)

According to problem $E_1 + E_2 = 6.4 \times 10^4 J$...(ii)

By solving equation (i) and (ii), we get

 $E_1 = 4.8 \times 10^4 J$ and $E_2 = 1.6 \times 10^4 J$

19 (a)

Given, pressure= $20000Nm^{-2}$

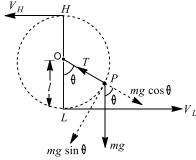
Volume= $1cc = 10^{-6} m^3$

<mark>^ ∵Powe</mark>r=pressure×volume per second

:
$$Power = 20000 \times 10^{-6}$$

$$p = 0.02 w$$

20 **(d)**


$$W = \frac{MgL}{2n^2} = \frac{MgL}{2(3)^2} = \frac{MgL}{18} [n = 3 \text{ Given}]$$

21 **(c)**

When a particle is moved in a circle under the action of a torque then such motion is non-uniform circular motion.

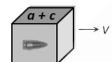
Applying principle of conservation of energy, total mechanical energy at L

=total mechanical energy at H

$$\therefore \frac{1}{2} m v_L^2 = \frac{1}{2} m v_H^2 + MG(2l)$$

But
$$v_H^2 = gl$$

$$\therefore \frac{1}{2}mv_L^2 = \frac{1}{2}m(gl) + 2mgl$$


$$\operatorname{Or} v_l^2 = 5gl$$

Or
$$v_L = \sqrt{5gl}$$

Hence for looping the vertical loop, the minimum velocity at the lowest point L IS $\sqrt{5gl}$.

22 (b)

Initially bullet moves with velocity *b* and after collision bullet get embedded in block and both move together with common velocity

By the conservation of momentum

$$\Rightarrow a \times b + 0 = (a+c)V \Rightarrow V = \frac{ab}{a+c}$$

(a) 23

24

Work done (W) = Area under curve of F-x graph = Area of triangle $OAB = \frac{1}{2} \times 5 \times 1 = 2.5 \text{ J}$

25 (d)

$$W = \int_0^5 F dx = \int_0^5 (7 - 2x + 3x^2) dx$$
$$= [7x - x^2 + x^3]_0^5$$
$$= 35 - 25 + 125 = 135 I$$

26 (a)

Since body moves with constant velocity, so. Net force on the body is zero.

Here,
$$N = mg$$
, $F = f$

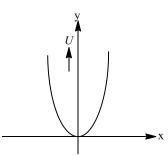
$$\therefore W = \vec{\mathbf{F}} \cdot \vec{\mathbf{s}} = fs \cos 180''$$

$$= fs = -10 \times 2 = -20 \text{ J}$$

27 **(c)**

If momentum is Zero ie, if p=0,then kinetic energy

$$K = \frac{p^2}{2m} = 0$$


But potential energy cannot be zero, thus a body can have energy without momentum.

28 **(c)**

The variation of potential energy(U) With distance(x)is

$$U = \frac{1}{2}kx^2$$

Hence, parabolic graph is obtained.

29 (b)

Because 50% loss in kinetic energy will affect its potential energy and due to this ball will attain only half of the initial height

30 (c)

Kinetic energy at highest point

$$(KE)_{H} = \frac{1}{2}mv^{2}\cos 2\theta$$
$$= K\cos^{2}\theta$$

$$= K \cos^2 \theta$$
$$= K(\cos 60^\circ)^2$$

$$=\frac{K}{4}$$

$$m_1u_1 + m_2u_2 = (m_1 + m_2)v$$

$$\begin{array}{ccc}
 & 10 \times u_1 + 5 \times 0 = (10 + 5) \times 4 \\
 & 0r \quad u_1 = \frac{15 \times 4}{10} = 6ms^{-1}
\end{array}$$

32 **(b)**

NEWTON

$$W = \int F dy$$

$$= \int_{-a}^{+a} (Ay^2 + By + C) dy$$

$$= \left[\frac{Ay^3}{3} + \frac{By^2}{2} + Cy \right]_{-a}^{+a}$$

$$= \left[\frac{Aa^3}{3} + \frac{Ba^2}{2} + Ca \right] - \left[-\frac{Aa^3}{3} + \frac{Ba^2}{2} - Ca \right]$$

$$= \frac{2Aa^3}{3} + 2Ca$$

33 **(a)**

$$\frac{1}{2}mv^{2} - f_{k}x = \frac{1}{2}kx^{2}$$

$$\frac{1}{2} \times 2 \times 16 - 15x = \frac{1}{2} \times 10^{4} \times x^{2}$$

$$\therefore x = 5.5 cm$$

34 **(b)**

35 **(b)**

Work done is given by

$$F \cdot s = (2\hat{\imath} + 4\hat{\jmath}) \cdot (3\hat{\jmath} + 5\hat{k})$$

= 12i

Now, power=
$$\frac{work}{time} = \frac{12}{2} = 6w$$

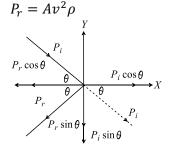
36 **(d)**

Mass to be lifted = 10×10^2 kg [: density of water = 10^3 kgm⁻³]

Height, h = 10 m

Work done = $10^4 \times 10 \times 10 = 10^6$ J

37 **(b)**


By momentum conservation before and after collision

$$m_1V + m_2 \times 0 = (m_1 + m_2)v \Rightarrow v = \frac{m_1}{m_1 + m_2}V$$

i.e. Velocity of system is less than *V*

38 **(b)**

Linear momentum of water striking per second to the wall $P_1=mv=Av\rho\ v=Av^2\ \rho$, similarly linear momentum of reflected water per second

Now making components of momentum along *x*-axes and *y*-axes. Change in momentum of water per second

$$= P_i \cos \theta + P_r \cos \theta$$

$$=2Av^2 \rho \cos \theta$$

By definition of force, force exerted on the Wall = $2Av^2 \rho \cos \theta$

39 **(c)**

Initial linear momentum of system = $m_A \vec{v}_A + m_B \vec{v}_B$

$$=0.2\times0.3+0.4\times v_B$$

Finally both balls come to rest

 \therefore final linear momentum = 0

By the law of conservation of linear momentum $\,$

$$0.2 \times 0.3 + 0.4 \times v_B = 0$$

$$\therefore v_B = -\frac{0.2 \times 0.3}{0.4} = -0.15 \ m/s$$

40 **(b)**

$$v = \sqrt{2gh} = \sqrt{2 \times 9.8 \times 0.1} = \sqrt{1.96} = 1.4 \text{ m/s}$$

41 **(c)**

The explanation are given below

(i) If a body is moved up in inclined plane, then the work done against friction force is zero as there is no friction. But a work has to be done against the gravity. So, this statement is incorrect.

(ii) If there were no friction, moving vehicles could not be stopped by locking the brakes. Vehicles are stopped by air friction only.

So, This Statement is correct.

(iii) In this situation the normal reaction is given by

 $R = mg \cos \alpha \quad \dots (i)$

If α increase then the value of $\cos \alpha$ also decreases.

So, this Statement is incorrect.

(iv)When the duster is rubbing upward then an external force is applied and its value is

 $F'=0.5g+\mu R$

$$F' = 0.5g + 0.5 \times 11$$

Or
$$F' = (0.5 \times 10 + 5.5)N$$
 (Here R=11 N)

$$Or F' = 10.5N$$

Hence, work done in rubbing the duster through a distance of 10 cm.

$$W = F' \times d$$

$$\Rightarrow W = 10.5 \times \frac{10}{100} J$$

Or
$$F' = 10.5$$
I

42 **(a)**

Initially ^{238}U nucleus was at rest and after decay its part moves in opposite direction

 α particle Residual nucleus

According to conservation of momentum

$$4v + 234V = 238 \times 0 \Rightarrow V = -\frac{4v}{234}$$

43 **(d**)

Velocity at *B* when dropped from *A* where AC = s

$$v^2 = u^2 + 2g(s - x)$$
(i)
 $v^2 = 2g(s - x)$ (ii)

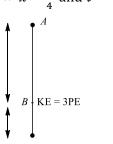
Potential energy at B = mgx

 \therefore Kinetic energy = 3 × potential energy

$$\frac{1}{2}m \times 2g(s-x) = 3 \times mgx$$

or
$$(s-x)=3x$$

or
$$s = 4x$$
 or $x = \frac{s}{4}$


From Eq. (i)

$$v^2 = 2g(s - x)$$

$$=2g\left(s-\frac{s}{4}\right)$$

$$=\frac{2g\times 3s}{4}=\frac{3gs}{2}$$

$$\therefore x = \frac{s}{4} \text{ and } v = \sqrt{\frac{3gs}{2}}$$

44 **(b**)

 $P = \sqrt{2mE}$ if E are equal then $P \propto \sqrt{m}$

i.e., heavier body will possess greater momentum

45 **(b)**

The linear momentum of exploding part will remain conserved.

Applying conservation of linear momentum, We write,

$$m_1u_1 = m_2u_2$$

Here,
$$m_1 = 18$$
kg, $m_2 = 12$ kg

$$u_1 = 6ms^{-1}, u_2 = ?$$

$$\therefore 18 \times 6 = 12 u_2$$

$$\implies u_2 = \frac{18 \times 6}{12} \ 9ms^{-1}$$

Thus, kinetic energy of 12 kg mass

$$k_2 = \frac{1}{2}m_2u_2^2$$

$$= \frac{1}{2} \times 12 \times (9)^2$$

$$= 6 \times 91$$

$$=6 \times 81$$

$$=486 I$$

46 **(c)**

 $P = \sqrt{2mE}$ it is clear that $P \propto \sqrt{E}$

So the graph between P and \sqrt{E} will be straight line

But graph between $\frac{1}{p}$ and \sqrt{E} will be hyperbola

47 **(d)**

Initial momentum = mv

Final momentum = (m + M)V

By conservation of momentum mv = (m + M)V

$$\therefore \text{ Velocity of (bag + bullet) system } V = \frac{mv}{M+m}$$

$$\therefore \text{ Kinetic energy} = \frac{1}{2} (m + M)V^2$$

$$= \frac{1}{2}(m+M)\left(\frac{mv}{M+m}\right)^2 = \frac{1}{2}\frac{m^2v^2}{M+m}$$

48 **(b)**

Here
$$k = \frac{1}{2}mv^2 = as^2$$

$$\therefore mv^2 = 2as^2$$

Differentiating w.r.t. time t

$$2mv\frac{dv}{dt} = 4as\frac{ds}{dt} = 4asv, m\frac{dv}{dt} = 2as$$

This is the tangential force, $F_t = 2as$

Centripetal force
$$F_c = \frac{mv^2}{R} = \frac{2as^2}{R}$$

: Force acting on the particle

$$F = \sqrt{F_t^2 + F_c^2} = \sqrt{(2as)^2 + \left(\frac{2as}{R}\right)^2}$$
$$= 2as\sqrt{1 + s^2/R^2}$$

49 (d)

KE of colliding body before collision= $\frac{1}{2}mv^2$

After collision its velocity becomes

$$V' = \left(\frac{m_1 - m_2}{m_1 + m_2}\right) v = \frac{m}{3m} v = \frac{v}{3}$$

KE after collision= $\frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{v}{3}\right)^2$

$$=\frac{1}{2}\frac{mv^2}{9}$$

Ratio of kinetic energy= $\frac{KE_{before}}{KE_{after}}$

$$=\frac{\frac{1}{2}mv^2}{\frac{1}{2}\frac{mv^2}{9}}=\frac{9}{1}$$

50 **(b**)

$$m \longrightarrow 2$$
 $2m \longrightarrow v_1 2m \longrightarrow v_1$

Initial condition

Final condition

By conservation of linear momentum

$$2m = mv_1 + 2mv_2 \Rightarrow v_1 + 2v_2 = 2$$

By definition of *e*,
$$e = \frac{1}{2} = \frac{v_2 - v_1}{2 - 0}$$

$$\Rightarrow v_2 - v_1 = 1 \Rightarrow v_1 = 0 \text{ and } v_2 = 1ms^{-1}$$

The angle between the displacement and the applied retarded force is 180^{0}

∴Work done=Fs cos 180° – Fs

$$= -Ve$$

52 **(b)**

$$E = \frac{P^2}{2m} : E \propto \frac{1}{m} [If P = constant]$$

i.e., the lightest particle will possess maximum kinetic energy and in the given option mass of electron is minimum

53 **(a)**

Momentum would be maximum when KE would be maximum and this is the case when total elastic PE is converted KE.

According to conservation of energy

$$\frac{1}{2}kL^2 = \frac{1}{2}Mv^2$$

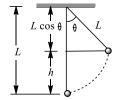
$$Or kL^2 = \frac{(Mv)^2}{M}$$

$$MKL^2 = p^2 \qquad (p = Mv)$$

$$\therefore p = L\sqrt{MK}$$

54 **(d)**

In compression or extension of a spring work is done against restoring force


In moving a body against gravity work is done against gravitational force of attraction

It means in all three cases potential energy of the system increases

But when the bubble rises in the direction of upthrust force then system works so the potential energy of the system decreases

$$W = \Delta K$$
 or $W_T + W_g + W_F = 0$

(Since, change in kinetic energy is zero)

Here, $W_T = \text{work done by tension} = 0$

 $W_{\rm g}$ = work done by fore of gravity

$$=-mgh$$

$$= -mgL(1 - \cos \theta)$$

$$\therefore W_F = -W_g = mgL(1 - \cos\theta)$$

56 **(b)**

When ball falls vertically downward from height h_1 its velocity $\vec{v}_1 = \sqrt{2gh_1}$

And its velocity after collision $\vec{v}_2 = \sqrt{2gh_2}$

Change in momentum

$$\Delta \vec{P} = m(\vec{v}_2 - \vec{v}_1) = m(\sqrt{2gh_1} + \sqrt{2gh_2})$$

[Because \vec{v}_1 and \vec{v}_2 are opposite in direction]

57 **(d)**

Initially mass 10~gm moves with velocity 100~cm/s

∴ Initial momentum = $10 \times 100 = 1000 \frac{gm \times cm}{sec}$

After collision system moves with velocity $v_{
m sys}$. then

Final momentum = $(10 + 10) \times v_{\text{sys.}}$

By applying in conservation of momentum $1000 = 20 \times v_{\rm sys.}$

$$\Rightarrow v_{\rm sys.} = 50 \ cm/s$$

If system rises upto height h then

$$h = \frac{v_{\text{sys.}}^2}{2a} = \frac{50 \times 50}{2 \times 1000} = \frac{2.5}{2} = 1.25 \text{ cm}$$

58 (a)

Particle falls from height h then formula for height covered by it in nth rebound is given by

$$h_n = he^{2n}$$

Where e = coefficient of restitution, n = No. of rebound

Total distance travelled by particle before rebounding has stopped

$$H = h + 2h_1 + 2h_2 + 2h_3 + 2h_4 + \cdots$$

$$= h + 2he^2 + 2he^4 + 2he^6 + 2he^8 + \cdots$$

$$= h + 2h(e^2 + e^4 + e^6 + e^8 + \cdots)$$

$$= h + 2h \left[\frac{E^2}{1 - e^2} \right] = h \left[1 + \frac{2e^2}{1 - e^2} \right] = h \left(\frac{1 + e^2}{1 - e^2} \right)$$

60 **(d)**

If it is a completely inelastic collision then

$$m_1v_1 + m_2v_2 = m_1v + m_2v$$

$$v = \frac{m_1v_1 + m_2v_2}{m_1 + m_2} \xrightarrow{p_1} \frac{m_2}{v_1}$$

$$\mathrm{KE} = \frac{\mathrm{p}_1^2}{2\mathrm{m}_1} + \frac{p_2^2}{2m_2}$$

As p_1 and p_2 both simultaneously cannot be zero therefore total KE cannot lost.

61 **(b)**

 $k_A > k_B$, x is the same

$$\therefore \frac{1}{2}k_A x^2 > \frac{1}{2}k_B x^2 \Rightarrow W_A > W_B$$

Forces are the same

$$k_A x_A = k_B x_B$$
, As $k_A > k_B$, $x_A < x_B$

$$W_A' = \frac{1}{2}(k_A x_A) x_A$$
 and $W_B' = \frac{1}{2}(k_B x_B) x_B$

$$W_A' < W_B'$$
; $W_A > W_B$ but $W_A' < W_B'$

62 **(b)**

Potential energy=Kinetic energy

Ie,
$$mgh = \frac{1}{2}mv^2$$

Or $v = \sqrt{2gh}$

If h_1 and h_2 are initial and final heights, then

$$v_1 = \sqrt{2gh_1}, \ v_2 = \sqrt{2gh_2}$$

Loss in velocity

$$\Delta v = v_1 - v_2 = \sqrt{2gh_1} - \sqrt{2gh_2}$$

:Fractional loss in velocity $=\frac{\Delta v}{v_1}$

$$=\frac{\sqrt{2gh_1}\ -\sqrt{2gh_2}}{\sqrt{2gh_1}}$$

$$\frac{\Delta v}{v_1} = 1 - \sqrt{\frac{h_2}{h_1}}$$

$$= 1 - \sqrt{\frac{1.8}{5}}$$

$$= 1 - \sqrt{0.36} = 1 - 0.6 = 0.4 = \frac{2}{5}$$

63 **(a)**

$$E = \frac{p^2}{2m}$$
. If $P = \text{constant then } E \propto \frac{1}{m}$

i. e., kinetic energy of heavier body will be less. As the mass of gun is more than bullet therefore it possess less kinetic energy

64 **(b)**

65 **(d**)

Let m be the mass of the block, h the height from which it is dropped, and x the compression of the spring. Since, energy is conserved, so

Final gravitational potential energy

= final spring potential energy

or
$$mg(h + x) = \frac{1}{2}kx^2$$

or
$$mg(h+x) + \frac{1}{2}kx^2 = 0$$

or
$$kx^2 - 2mg(h+x) = 0$$

$$kx^2 - 2mgx - 2mgh = 0$$

This is a quadratic equation for x. Its solution is

$$x = \frac{mg \pm \sqrt{(mg)^2 + 2mghk}}{k}$$

Now, $mg = 2 \times 9.8 = 19.6 \text{ N}$

and $hk = 0.40 \times 1960 = 784 \text{ N}$

$$\therefore \quad x = \frac{19.6 \pm \sqrt{(19.6)^2 + 2(19.6)(784)}}{1960}$$

= 0.10 m or -0.080 m

Since, x must be positive (a compression) we accept the positive solution and reject the negative solution. Hence, x = 0.10 m

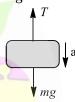
66 **(b)**

67 **(a)**

If a body has momentum, it must have kinetic energy also, (a) is the wrong statement
If the energy is totally potential, it need not have momentum (b) is correct (c) and (d) are also correct

68 **(a)**

$$v = \frac{dx}{dt} = 3 - 8t + 3t^2$$


$$v_0 = 3 \text{ m/s and } v_4 = 19 \text{ m/s}$$

$$W = \frac{1}{2}m(v_4^2 - v_0^2) \text{ [According to work energy theorem]}$$

$$= \frac{1}{2} \times 0.03 \times (19^2 - 3^2) = 5.28 J$$

69 **(b**)

From force diagram as shown in figure mg - T = ma

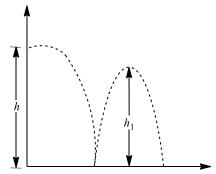
$$T = mg - ma = mg - \frac{mg}{4} = \frac{3mg}{4}$$

 $W_T =$ work done by tension

$$= \vec{\mathbf{T}} \cdot \vec{\mathbf{s}} = Ts \cos 180^{\circ} = -\frac{3mgd}{4}$$

70 (a)

Given that,
$$S = \frac{1}{3}t^2$$


$$v = \frac{dS}{dt} = \frac{2}{3}t; \ a = \frac{d^2S}{dt^2} = \frac{2}{3}$$

$$F = ma = 3 \times \frac{2}{3} = 2N$$
; Work = $2 \times \frac{1}{3}t^2$

At t=2

Work =
$$2 \times \frac{1}{3} \times 2 \times 2 = \frac{8}{3}$$
 J

71 **(b)**

Total distance travelled by the ball before its second hit is

$$H = h + 2h_1$$

= $h[1 + 2e^2]$ (: $h_1 = he^2$)

72 **(d)**

Condition for vertical looping

$$h = \frac{5}{2}r = 5cm : r = 2 cm$$

73 **(b)**

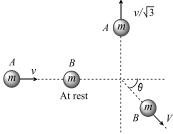
Initial velocity of particle, $v_i = 20 \text{ ms}^{-1}$ Final velocity of the particle, $v_f = 0$ According to work-energy theorem,

$$W_{\text{net}} = \Delta KE = K_f - K_i$$

$$= \frac{1}{2} m (v_f^2 - v_i^2)$$

$$= \frac{1}{2} \times 2(0^2 - 20^2)$$

$$= -400 \text{ J}$$


74 (a)

Power of gun = $\frac{\text{Total K.E.of fired bullet}}{\text{time}}$ $= \frac{n \times \frac{1}{2} m v^2}{t} = \frac{360}{60} \times \frac{1}{2} \times 2 \times 10^{-2} \times (100)^2$

= 600 W

75 (a)

Let mass A moves with velocity v and collides inelastically with mass B, which is at rest

According to problem mass A moves in a perpendicular direction and let the mass B moves at angle θ with the horizontal with velocity v Initial horizontal momentum of system (before collision) = mv(i) Final horizontal momentum of system (after collision) = mV cos θ (ii) From the conservation of horizontal linear momentum

 $mv = mV \cos \theta \Rightarrow v = V \cos \theta$...(iii)

Initial vertical momentum of system (before collision) is zero

Final vertical momentum of system $\frac{mv}{\sqrt{3}} - mV \sin \theta$

From the conservation of vertical linear momentum

$$\frac{mv}{\sqrt{3}} - mV \sin \theta = 0 \Rightarrow \frac{v}{\sqrt{3}} = V \sin \theta \quad ...(iv)$$

By solving (iii) and (iv)

$$v^{2} + \frac{v^{2}}{3} = V^{2}(\sin^{2}\theta + \cos^{2}\theta)$$

$$\Rightarrow \frac{4v^2}{3} = V^2 \Rightarrow V = \frac{2}{\sqrt{3}}v$$

76 **(b)**

Kinetic energy $K = \frac{1}{2}mr^2\omega^2$

$$e, K \propto r$$

The ratio of new kinetic energy to the original KE is given

$$\frac{K_2}{K_1} = \left(\frac{r_2}{r_1}\right)^2$$

77 (b)

$$dW = -\mu \left[\frac{M}{L}\right] gl \ dl$$

$$W = \int_{0}^{\frac{2L}{3}} -\frac{\mu Mg}{L} l \, dl$$

or
$$W = -\frac{\mu Mg}{L} \left| \frac{l^2}{2} \right|_0^{\frac{2L}{3}}$$

or
$$W = -\frac{\mu Mg}{L} \left| \frac{4L^2}{9} - 0 \right|$$

or
$$W = -\frac{2}{9}\mu MgL$$

78 **(a)**

$$P = E \Rightarrow mv = \frac{1}{2} mv^2 \Rightarrow v = 2 m/s$$

79 **(c)**

From work-energy theorem

$$\Delta KE = W_{net}$$

or
$$K_f - K_i = \int Pd$$

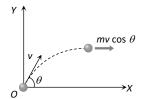
or
$$\frac{1}{2}mv^2 = \int_0^2 \left(\frac{3}{2}t^2\right)dt$$

$$v^2 = \left[\frac{t^3}{2}\right]_0^2$$

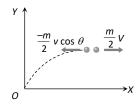
$$v = 2 \text{ ms}^{-1}$$

80 **(c**)

Area of acceleration–displacement curve gives change in *KE* per unit mass


$$\frac{1}{2}m(v^2 - u^2) = F.S = \frac{mdv}{dt} \times S$$
change in $KE - dv$

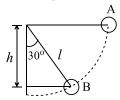
$$\therefore \frac{\text{change in } KE}{\text{Mass}} = \frac{dv}{dt} \times s$$


81 **(a)**

Shell is fired with velocity \boldsymbol{v} at an angle $\boldsymbol{\theta}$ with the horizontal

So its velocity at the highest point = horizontal component of velocity = $v \cos \theta$ So momentum of shell before explosion = $mv \cos \theta$

When it breaks into two equal pieces one piece retraces its path to the canon, then other part moves with velocity V



So momentum of two pieces after explosion $= \frac{m}{2} (-v \cos \theta) + \frac{m}{2} V$

By the law of conservation of momentum $mv \cos \theta = \frac{-m}{2} v \cos \theta + \frac{m}{2} V \Rightarrow V = 3v \cos \theta$

82 **(c)**

Vertical height = $h = l \cos 30^{\circ}$ Loss of potential energy = mgh

 $= mgl\cos 30^{\circ} = \frac{\sqrt{3}}{2}mgl$

 $\therefore \text{ Kinetic energy gained} = \frac{\sqrt{3}}{2} mgl$

83 **(a**)

Initial energy of body = $\frac{1}{2}mv^2 = \frac{1}{2} \times 1 \times (20)^2 = 200 J$

A part of this energy consumes in doing work against gravitational force and remaining part consumes in doing work against air friction

i.e.,
$$W_T = W_{grav.} + W_{air\ friction}$$

 $\Rightarrow 200 = 1 \times 10 \times 18 + W_{air} \Rightarrow W_{air} = 20 J$

84 **(a)**

Let \boldsymbol{v} be the velocity with which the bullet will emerge

Now, change in kinetic energy = work done

For first case, $\frac{1}{2}m(100)^2 - \frac{1}{2}m \times 0 = F$

For second case, $\frac{1}{2}m(100)^2 - \frac{1}{2}mv^2 = F \times 0.5$

Dividing eq. (ii) by Eq. (i), we get

$$\frac{(100)^2 - (v)^2}{(100)^2} = \frac{0.5}{1} = \frac{1}{2} \text{ or } v = \frac{100}{\sqrt{2}}$$
$$= 50\sqrt{2}\text{ms}^{-1}$$

85 (d)

As $m_1=m_2$ therefore after elastic collision velocities of masses get interchanged i.e. velocity of mass $m_1=-5\ m/s$ and velocity of mass $m_2=+3\ m/s$

86 **(c)**

87 **(d)**

88 (c)

Volume= $av = \pi r^2 v$

Mass = $\pi r^2 v \times 1000$ SI units

Power of water jet

$$= \frac{\frac{1}{2}mv^2}{t} = \frac{1}{2} \times \pi r^2 v \times 1000 \times v^2 = 500\pi r^2 v^3$$

89 **(b**)

Gravitational potential energy of ball gets converted into elastic potential energy of the

$$\frac{\text{spring}}{\text{spring}} mg(h+d) = \frac{1}{2} K d^2$$

Net work done = $mg(h+d) - \frac{1}{2}Kd^2 = 0$

90 (a)

Given a=-kx $a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = -kx$

$$dt = dx \cdot dt$$

$$Or \frac{vdv}{dx} = -kx$$

Or v dv = -kx dx

Let for any displacement from 0 to x, the velocity changes from $v_0 to v$.

$$\Rightarrow \int_{v_0}^{v} v dv = -\int_{0}^{x} k \ x \ dx$$

$$\operatorname{Or} \frac{v^2 - v_0^2}{2} = -\frac{kx^2}{2}$$

$$\operatorname{or} \ m\left(\frac{v^2 - v_0^2}{2}\right) = -\frac{mkx^2}{2}$$

Or $\Delta K \propto x^2$ ($\Delta K \text{ is loss in } KE$)

91 **(c)** $F = \frac{-dU}{dx}$ it is clear that slope of U - x curve is zero at point B and C

 $\therefore F = 0$ for point *B* and *C*

92 **(d)**

Central of the mass of the rod lies at the midpoint and when the is displaced.

Through an angle 60° it lises to point B.

From the figure

$$\sin 30^{\circ} = \frac{BC}{AB}$$

Or
$$\sin 30^{\circ} = \frac{1}{1/2}$$

Or
$$\frac{1}{2} = \frac{L}{l/2}$$

Or
$$L = \frac{l}{4}$$

The potential energy of the rod in this position is

$$U = mgL$$

$$U = mg^{\frac{1}{4}}$$

93 **(d)**

When trolley are released then they possess same linear momentum but in opposite direction.

Kinetic energy acquired by any trolley will dissipate against friction

$$\therefore \mu \, mg \, s = \frac{P^2}{2m} \Rightarrow s \propto 1/m^2 \, [\text{As } P \text{ and } u \text{ are constants}]$$

$$\Rightarrow \frac{s_1}{s_2} = \left(\frac{m_2}{m_1}\right)^2 = \left(\frac{3}{1}\right)^2 = \frac{9}{1}$$

94 **(b)**

Kinetic energy of a body

$$K = \frac{P^2}{2M}$$

Or
$$K \propto P^2$$

$$\operatorname{Or} \frac{p_2}{p_1} = \sqrt{\frac{K_2}{K_1}} = \sqrt{4}$$

or
$$P_2 = 2P_1$$

95 **(b)**

- 1. If the surface is smooth then the kinetic energy at *B* never be zero
- 2. If the surface is rough, the kinetic energy at *B* be zero. Because, work done by force of friction is negative. If work done by friction is equal to *mgh* then, net work done on body will be zero. Hence, net change in kinetic energy is zero. Hence, (b) is correct

- 3. If the surface is rough, the kinetic energy at *B* must be lesser than *mgh*. If surface is smooth, the kinetic energy at *B* is equal to *mgh*
- 4. The reason is same as in (a) and (b)

96 **(d)**

$$E = \frac{P^2}{2m} \Rightarrow E \propto \frac{1}{m} \Rightarrow \frac{E_1}{E_2} = \frac{m_2}{m_1}$$

97 **(a**

98 **(c)**

Let the blade stops at depth d into the wood

$$v^2 = u^2 + 2aS$$

$$\Rightarrow 0 = \left(\sqrt{2gh}\right)^2 + 2(g-a)d$$

By solving
$$a = \left(1 + \frac{h}{d}\right)g$$

So the resistance offered by the wood = mg(1 +

$$\frac{h}{d}$$

99 (a)

Work done=area between the graph force displacement curve and displacement

$$APW = \frac{1}{2} \times 6 \times 10 - 5 \times 4 + 5 \times 4 - 5 \times 2$$

$$W = 20 I$$

According to work energy theorem

$$\Delta = K_E = W$$

$$K_{E_f} = W + \Delta K$$

$$=20+25$$

$$=451$$

100 **(d)**

Due to the same mass of *A* and *B* as well as due to elastic collision velocities of spheres get interchanged after the colision

System of particles and Rotational Motion RED ZONE

1.	A uniform rod <i>AB</i> of lea	${f ngth}\ l$ and mass m is free (to rotate about point A	. The rod is released from rest in		
	horizontal position. Given that the moment of inertia of the rod about A is $\frac{ml^2}{3}$ the initial angular					
	acceleration of the rod			3		
	<u>←</u> 1 — →					
	A B		90			
	a) $\frac{2g}{3l}$	b) $mg\frac{l}{2}$	c) $\frac{3}{2}gl$	$d)\frac{3g}{2l}$		
	J1	4	2	Δι		
2.	•			on the four corners of a square of		
				ne of the sides of the square is		
	a) $\frac{4}{5}M a^2 + 2M b^2$	b) $\frac{8}{5}$ $\frac{M}{5}$ $a^2 + 2M b^2$	$\frac{8}{5}M a^2$	d) $\frac{4}{5}M a^2 + M b^2$		
3.	· ·	and translatory kinetic en		3		
	a) $\frac{2}{9}$	b) $\frac{2}{7}$	c) $\frac{2}{5}$	d) $\frac{7}{2}$		
	9	/	5	2		
4.	Angular momentum is	conserved	1 > NI			
	a) Always	ia abaant	b) Never	I towaya ia abaant		
_	c) When external force		d) When external			
5.	When a ceiling fan is switched off, its angular velocity falls to half while it makes 36 rotations. How many rotations will it make before coming to rest?					
	a) 24	b) 36	c) 18	d) 12		
6.		•	,	on in <i>L</i> . If its kinetic energy is		
0.	<u> </u>	ocity doubled, its new ang		in 2. ii tee iiii ete energy ie		
	_	7	c) $\frac{L}{2}$	1) 21		
	a) 4 <i>L</i>	b) $\frac{L}{4}$	4	d) 2 <i>L</i>		
7.	-	•	-	es in such a way that one end of		
		n. The moment of inertia o				
	ML^2	$_{\rm b}$ $2ML^2$	$3ML^2$	d $2ML^2$		

Two masses of 200 g and 300 g are attached to the 20 cm and 70 cm marks of a light metre rod

respectively. The moment of inertia of the system about an axis passing through 50 cm mark is

c) 0.3 kg m^2

d) Zero

b) 0.03 kg m^2

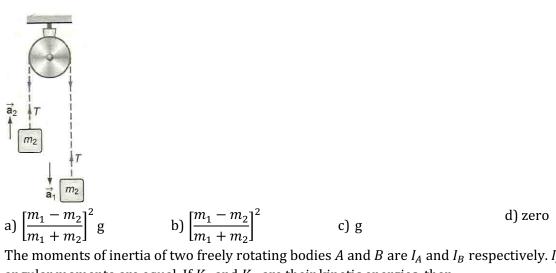
8.

a) 0.15 kg m²

of

9.	A couple produces					
	a) No motion		b) Linear and rotati	ional motion		
	c) Purely rotational m	notion	d) Purely linear mo	tion		
10.	The centre of mass of	three particles of masse	es 1 kg, 2kg and 3kg is at (2,	2, 2). The position of the fourth		
			t the new centre of mass is a			
	a) (-3,-3,-3)	b) (-3,3,-3)	c) (2,3,-3)	d) (2,-2,3)		
11.		. , ,	J to 5 J in 5 s, then the torq			
		, 4/		d) None of these		
	a) $\frac{3J}{5}$	b) $\frac{4J}{5}$	c) $\frac{5J}{4}$,		
12.	velocity of 3 ms^{-1} and			instant the 2 kg body has a city of the centre of mass at that		
	instant is	L) 4 =1	-) 0	J) N 641		
40	a) $5 ms^{-1}$	b) 1 ms ⁻¹	c) 0	d) None of these		
13.	-		ne middle point <i>O</i> at an angled at an angled dependicular to the plan	e of 60°. The moment of inertia e of the rod will be		
	L/ 2 60° L/ 2					
	M1 ²	M1 ²	M12	MI^2		
	a) $\frac{ML^2}{6}$	b) $\frac{ML^2}{12}$	c) $\frac{ML^2}{24}$	d) $\frac{ML^2}{3}$		
	U	12	24	3		
14.			ch is tangent and parallel to licular to its plane will be	its plane is I . Then the moment		
	a) $\frac{3I}{4}$	b) $\frac{5I}{6}$	3I	d) $\frac{6I}{5}$		
	$\frac{4}{4}$	6	2	4) <u></u>		
15.		plane is I. What is the m	l <mark>ius <i>R</i> about</mark> an axis passing <mark>omen</mark> t of inertia about its di	_		
	a) <i>I</i>	b) $\frac{I}{2}$	$\frac{1}{\sqrt{2}}$	d) $I + MR^2$		
16.	The ratio of the radii of around their respective	of gyration of a circular	·	g, each of same mass and radius,		
	a) $\sqrt{2}:1$	b) $\sqrt{2} : \sqrt{3}$	c) $\sqrt{3} : \sqrt{2}$	d) $1:\sqrt{2}$		
17.		, , , , ,				
	A <i>T</i> shaped object with dimension shown in the figure, is lying on a smooth floor. A force F is applied at the point <i>P</i> parallel to <i>AB</i> , such that the object has only the translational motion without rotation. Find					
	the location of P with respect to C .					
	$ \begin{array}{c c} A & & \\ \hline & P & \\ \hline & 2l & \\ \end{array} $	1 <i>B</i>				
	C					
	a) $\frac{2}{3}l$	b) $\frac{3}{2}l$	c) $\frac{4}{3}l$	d) <i>l</i>		
10	J	4	J			
18.	A wheel of mass 8 kg a	and radius 40 cm is rolli	ing on a norizontal road wit	h angular velocity of 15 rad s $^{-1}$.		

19. The two bodies of mass m_1 and $m_2(m_1 > m_2)$ respectively are tied to the ends of a massless string, which passes over a light and frictionless pulley. The masses are initially at rest and the released. Then acceleration of the centre of mass of the system is


c) 72 J

d) 144 J

The moment of inertia of the wheel about its axis is $0.64\ kg\ m^{-2}$. Total KE of wheel is

b) 216 J

a) 288 J

20. The moments of inertia of two freely rotating bodies A and B are I_A and I_B respectively. $I_A > I_B$ and their angular momenta are equal. If K_A and K_B are their kinetic energies, then

a)
$$K_A = K_B$$

b)
$$K_A > K_B$$

c)
$$K_A < K_B$$

d)
$$K_A = 2K_B$$

A uniform rod of mass m and length l is suspended by means of two light inextensible strings as shown 21. in figure. Tension in one string immediately after the other string is cut is

A metre stick is held vertically with one end on the floor and is then allowed to fall. If the end touching 22. the floor is not allowed to slip, the other end will hit the ground with a velocity of $(g = 9.8 \text{ m/s}^2)$

a) $3.2 \, m/s$

b) $5.4 \, m/s$

c) $7.6 \, m/s$

d) $9.2 \, m/s$

The instantaneous angular-position of a point on a rotating wheel is given by the equation $\theta(t)=2t^3-1$ 23. $6t^2$. The torque on the wheel becomes zero at

a)
$$t = 2s$$

b)
$$t = 1s$$

c)
$$t = 0.2 s$$

d)
$$t = 0.25 s$$

24. If the torque of the rotational motion be zero, then the constant quantity will be

a) Angular momentum

b) Linear momentum

c) Angular acceleration

d) Centripetal acceleration

An inclined plane makes an angle of 30° with the horizontal. A solid sphere rolling down this inclined 25. plane from rest without slipping has a linear acceleration equal to

a) $\frac{g}{3}$

A torque of 30 *N-m* is applied on a 5 kg wheel whose moment of inertia is $2kg - m^2$ for 10 sec. The 26. angle covered by the wheel in 10 sec will be

a) 750 rad.

b) 1500 rad.

c) 3000 rad.

d) 6000 rad.

A ring starts to roll down the inclined plane of height h without slipping. The velocity with it reaches the 27. ground is

a)
$$\sqrt{\frac{10gh}{7}}$$

c)
$$\sqrt{\frac{4gh}{3}}$$

d) \sqrt{gh}

28.	A disc is rolling (without slipping) on a horizontal surface C is its centre and Q and P are two points equidistant from C . Let v_P , v_Q and v_C be the magnitude of velocities of pints P , Q and C respectively, the	en
	C Q P P	
	a) $v_Q > v_C > v_P$ b) $v_Q < v_C < v_P$ c) $v_Q = v_P, v_C = \frac{1}{2}v_P$ d) $v_Q < v_C > v_P$	
29.	Four point masses, each of value m , are placed at the corners of a square ABCD of side l . The moment of inertia of this system about an axis passing through A and parallel to BD is	of
	a) $\sqrt{3} ml^2$ b) $3 ml^2$ c) ml^2 d) $2 ml^2$	
30.	A metre stick of mass $400 g$ is pivoted at one end and displaced through an angle 60° . The increase in potential energy is	ts
	a) 2 <i>J</i> b) 3 <i>J</i> c) 0 <i>J</i> d) 1 <i>J</i>	
31.	The distance of the centre of mass of the T -shaped plate from O is	
	2 m	
32.	a) 7 m b) 2.7 m c) 4 m d) 1 m A torque of 50 <i>Nm</i> acting on a wheel at rest rotates it through 200 <i>radians</i> in 5 <i>sec</i> . Calculate the	
32.	angular acceleration produced	
	a) $8 rad sec^{-2}$ b) $4 rad sec^{-2}$ TON/S AFc) $16 rad sec^{-2}$ d) $12 rad sec^{-2}$	
33.	A uniform rod AB of length l and mass m is free to rotate about point A . The rod is released from rest	in
	the horizontal position. Given that the moment of inertia of the rod about A is $\frac{ml^2}{3}$, the initial angular	
	acceleration of the rod will be	
	$A = \begin{bmatrix} l & -1 \\ l & -1 \end{bmatrix} B$	

34. The centre of mass of a system of two particles divides the distance them

b) $mg\frac{l}{2}$

- a) In inverse ratio of square of masses of particles
- b) In direct ratio of square of masses of particles
- c) In inverse ratio of masses of particles
- d) In direct ratio of masses of particles
- 35. Two wheels A and B are mounted on the same axle. Moment of inertia of A is 6 kgm² and it is rotating at 600 rpm when B is at rest. What is moment of inertia of B, if their combined speed is 400 rpm?
 - a) 8 kg m^2

a) $\frac{2g}{3l}$

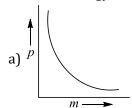
- b) 4 kg m²
- c) 3 kg m^2

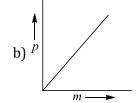
c) $\frac{3}{2}$ gl

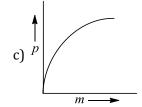
d) 5 kg m^2

d) $\frac{3g}{2l}$

36.	1 ,	oout the point of projectio	with the horizontal. The man n when the particle is at its	agnitude of angular momentum maximum height h is	
	a) Zero	b) $\frac{mvh^2}{\sqrt{2}}$	c) $\frac{mv^2h}{\sqrt{2}}$	d) $\frac{mv^2h}{\sqrt{2}}$	
37.	A circular turn tab	le has a block of ice placed	l at its centre. The system re	otates with an angular speed ω	
	about an axis passi	ing through the centre of t	he table. If the ice melts on	its own without any	
	evaporation, the sp	peed of rotation of the syst	tem		
	a) Becomes zero		b) Remains consta	ant at the same value ω	
	-	alue greater than ω	d) Decreases to a		
38.				an angle of elevation θ . The gun	
	was initially at rest system	t on a horizontal frictionle	ss surface. After firing, the	centre of mass of gun-shot	
	a) Moves with a ve	elocity $\frac{mv}{M}$			
		Plocity $\frac{m_v}{M\cos\theta}$ in the horizon	ntal direction		
	c) Remain at rest				
	d) Moves with velo	ocity $\frac{(M-m)v}{(M+m)}$ in the horizon	tal direction		
39.	The radius of a rot	ating disc is suddenly redu	aced to half without any cha	ange in its mass. Then its angular	
	velocity will be				
	a) Four times		c) Half	d) Unchanged	
40.				e of ends is at the origin. The	
			tance of centre of mass of re	_	
	a) $\frac{L}{2}$	b) $\frac{2L}{3}$	c) $\frac{L}{4}$	d) $\frac{L}{5}$	
41.	L	J	T	3	
11.	The moment of inertia of a thin uniform rod length L and mass M about an axis passing through a point at a distance of 1/3 from one of its ends and perpendicular to the rod is				
	_			_	
	a) $\frac{ML^2}{12}$	b) 	c) $\frac{7ML^2}{48}$	d) $\frac{ML^2}{48}$	
42.	Two bodies have the	heir moment <mark>s of inertia <i>I</i>:</mark>	<mark>and 2<i>I</i> respective</mark> ly about th	neir axis of rotation. If their	
	kinetic energies of	rotation are <mark>equal, their a</mark>	<mark>ngular momentu</mark> m will be i	n the ratio	
	a) 1:2	b) $\sqrt{2}:1$	c) 2:1	d) $1:\sqrt{2}$	
43.	A string is wound i	round the rim of a mounte	d fly wheel of mass $20 kg$ a	and radius $20 cm$. A steady pull of	
	25 <i>N</i> is applied on wheel is	the cord. Neglecting friction	on and mass of the string, th	he angular acceleration of the	
	a) $50 s^{-2}$	b) 25 s ⁻²	c) $12.5 s^{-2}$	d) $6.25 s^{-2}$	
44.		•		s $20 m/s$ and $10 m/s$ towards	
			ction. What is the velocity o	•	
	a) 5 <i>m/s</i>	b) 6 <i>m/s</i>	c) 8 <i>m/s</i>	d) Zero	
45.	• •	,	,	isc, the new moment of inertia is	
	-			d) None of these	
	a) $\frac{3}{2}mr^2$	b) $\frac{mr^2}{2}$	c) $\frac{3}{8}mr^2$		
46.				elow, touching each other, with	
		_	es are marked P, Q, R respe	ectively, the distance of centre of	
	mass of the system	from <i>P</i> is			
	Y				


a)	PQ + PR + QR
aj	2


b)
$$\frac{PQ + PR}{3}$$


c)
$$\frac{PQ + QR}{3}$$


d)
$$\frac{PR + QR}{3}$$

47. If kinetic energy of a body remains constant, then momentum-mass graph is

48. A uniform rod of length 2L is placed with one end in contact with the horizontal and is then inclined at an angle α to the horizontal and allowed to fall without slipping at contact point. When it becomes horizontal, its angular velocity will be

a)
$$\omega = \sqrt{\frac{3g\sin\alpha}{2L}}$$

a)
$$\omega = \sqrt{\frac{3g\sin\alpha}{2L}}$$
 b) $\omega = \sqrt{\frac{2L}{3g\sin\alpha}}$ c) $\omega = \sqrt{\frac{6g\sin\alpha}{2L}}$ d) $\omega = \sqrt{\frac{2L}{g\sin\alpha}}$

c)
$$\omega = \sqrt{\frac{6g\sin\alpha}{2L}}$$

$$d) \omega = \sqrt{\frac{2L}{g \sin \alpha}}$$


49. A bag of mass M hangs by a long thread and a bullet (mass m) comes horizontally with velocity v and gets caught in the bag. For the combined system of bag and bullet, the correct option is

a) Momentum is
$$\frac{mMv}{(m+M)}$$

b) Kinetic energy is
$$\frac{1}{1}Mv^2$$

d) Kinetic energy is
$$\frac{1}{2} \frac{m^2 v^2}{(M+m)}$$

From a circular disc of radius R and mass 9 M, a small disc of radius R/3 is removed from the disc. The 50. moment of inertia of the remaining disc about an axis perpendicular to the plane of the disc and passing through O is

- a) $4MR^2$
- b) $\frac{40}{9} MR^2$
- c) $10 MR^2$
- d) $\frac{37}{9} MR^2$
- A solid sphere (mass 2 M) and a thin hollow spherical shell (mass M) both of the same size, roll down an 51. inclined plane, then
 - a) Solid sphere will reach the bottom first
- b) Hollow spherical shell will reach the bottom first
- c) Both will reach at the same time
- d) None of these
- Two spherical bodies of masses *M* and 5*M* in free space with initial separation between their centres 52. equal to 12R. If they attract each other due to gravitational force only, then the distance covered by the smaller body just before collision is
 - a) 2.5 R
- b) 4.5 R

c) 7.5 R

- d) 1.5 R
- 53. If the angular momentum of a rotating body about a fixed axis is increased by 10%. Its kinetic energy will be increased by
 - a) 10%

b) 20%

c) 21%

- d) 5%
- 54. A solid sphere is rotating about a diameter at an angular velocity ω . If it cools so that its radius reduces to $\frac{1}{n}$ of its original value, its angular velocity becomes

	a) $\frac{\omega}{n}$	b) $\frac{\omega}{n^2}$	c) <i>nω</i>	d) $n^2 \omega$		
55.	Three identical sphere		ced at the corners of an equation vector of the centre o	uilateral triangle of side 2 m. f mass is		
	a) $\sqrt{3}(\hat{\mathbf{i}} - \hat{\mathbf{j}})$	b) $\frac{\hat{\mathbf{i}}}{\sqrt{3}} + \hat{\mathbf{j}}$	c) $\hat{i} + \hat{j}/3$	d) $\hat{\mathbf{i}} + \hat{\mathbf{j}}/\sqrt{3}$		
56.	The acceleration of the a) g sin α	V S	orm solid disc rolling dowr c) 1/2 g sin α	an inclined plane of angle α is d) 1/3 g sin α		
57.	Identify the correct sta a) Individual particles b) The centre of mass c) The centre of mass	atement for the rotational of the body do not under of the body remains unch of the body moves unifor	motion of a rigid body. go accelerated motion. anged. mly in a circular path.	, , ,		
58.	Three masses of 2 kg, respectively. The positi	4 kg and $4 kg$ are placed tion vector of its centre of), (1, 1, 0) and (0, 1, 0)		
	4 3	b) $(3\hat{i} + \hat{j})$	3 3	d) $\frac{1}{5}\hat{\imath} + \frac{4}{5}\hat{\jmath}$		
59.			etic energy 360 J and angul			
	a) 18 kg m ²	b) 1.8 kg m ²	c) 2.5 kg m ²	d) 9 kg m ²		
60.	hold by one hand and	the string by the other. The sthen pulled down, short		n a hollow tube. The tube is n in a circle of radius <i>R</i> and f <i>r</i> . What is conserved d) None of the above		
61.	, ,		ide to rest on two measuri	•		
01.	uniform block of mass		od at a distance L/4 from t t end is	_		
	a) 18 <i>N</i>	b) 27 <i>N</i>	c) 29 N	d) 45 <i>N</i>		
62.	Two bodies of mass <i>m</i> is			The ratio their kinetic energies		
	a) 1:4	b) 4 <mark>: 1 NEWTON</mark>		d) 1 : 12		
63.	A wheel having moment of inertia $2 kg - m^2$ about its vertical axis, rotates at the rate of $60 rpm$ about this axis. The torque which can stop the wheel's rotation in one minute would be					
	a) $\frac{2\pi}{15}N-m$	b) $\frac{\pi}{12}N-m$	c) $\frac{\pi}{15}N-m$	$d)\frac{\pi}{18}N-m$		
64.	mass are found to be \imath	v_0 and a_0 at an instant t . It	t is possible that	acceleration of the centre of		
		b) $v_0 = 0, a_0 \neq 0$		d) $v_0 \neq 0, a_0 = 0$		
65.	A force $\vec{F} = 4\hat{\imath} - 5\hat{\jmath} + 3\hat{k}$ is acting a point $\vec{r}_1 = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$. The torque acting about a point $\vec{r}_2 = 3\hat{\imath} - \hat{k}$					
	$2\hat{j} - 3\hat{k}$ is	_	_			
	a) Zero	-	c) $42\hat{i} + 30\hat{j} + 6\hat{k}$	-		
66.				ss rod of length $2R$ as shown in		
		be the moment of inertiand perpendicular to the ro		is passing through the centre		
	R/2 $R/2$ $R/2$					
	a) $\frac{21}{5}MR^2$	b) $\frac{2}{5}MR^2$	c) $\frac{5}{2}MR^2$	d) $\frac{5}{21}MR^2$		
67.	If the angular moment	cum of any rotating body i	ncreases by 200%, then th	ne increase in its kinetic energy		
	a) 400%	b) 800%	c) 200%	d) 100%		

68.			on a fixed horizontal axis. A	_
	the falling block (m) is	at is wrapped around the r	im of the disc. The magnitu	de of the acceleration of
		b) $\frac{2m}{M+2m}$ g	M+2m	2M+m
	M + ZIII	M + ZIII	c) $\frac{M+2m}{2M}$ g	$d)\frac{2M+m}{2M}g$
69.	Consider the following tw			
		system of particles is zero.		
		em of particles is zero. The		
	a) I implies II and II impli		b) I does not imply II and	• •
70	c) I implies II but II does		d) I does not imply II but	-
70.	-	-	of the sphere is increased k	keeping mass same which
	one of the following will r	not be affected?	12.4	
	a) Moment of inertia		b) Angular momentum	
71	c) Angular velocity	was airanlar matian with an	d) Rotational kinetic ener	
71.	-		angular momentum <i>L</i> , if the	ne frequency of particles
		KE is halved, the angular r		d) 0.25 <i>L</i>
72	a) $4L$	b) $0.5L$	c) 2L	,
72.	_		2 is rolling without slipping o particles situated on the i	•
	_	ces experienced by the two	o particles situated on the i	illier and outer parts of
	the ring, $\frac{F_1}{F_2}$ is			
	a) $\frac{R_2}{R_4}$	b) $\left(\frac{R_1}{R_2}\right)^2$	c) 1	d) $\frac{R_1}{R_2}$
	R_1	$(\overline{R_2})$		R_1
73.	The direction of the angul	lar velocit <mark>y vector is along</mark>	22	
	a) The tangent to the circ	ular path	b) The inward radius	
	c) The outward radius		d) The axis of rotation	
74.			is at (0, 0, 0). Where shou	ld a particle of mass $40kg$
		bination <mark>c</mark> entre of <mark>mass</mark> wi		
	a) (0,0,0)	b) (7.5, 7.5, 7.5)	c) (1, 2, 3)	d) (4, 4, 4)
75.		INE VVI OIN 3 A	<mark>n acceler</mark> ation 2î+3ĵ-5k to	the centre of mass of the
	system, the mass of the sy	rstem i <mark>s</mark>	_	
	a) 5 units		b) $\sqrt{38}$ units	
	c) $5\sqrt{38}$ units		d) Given data is not corre	ect
76.			bout an axis through its ce	
	•	•	nall spheres each of mass n	, ,
		• •	pendicular diameters of th	e. The new angular
	velocity of the ring will be	• •		(· · ·)
	a) 4ω	b) $\frac{M}{4m}\omega$	c) $\left(\frac{M+4m}{M}\right)\omega$	d) $\left(\frac{M}{M+4m}\right)\omega$
77.	Choose the correct staten	nent about the centre of ma	ass (CM) of a system of two	particles
	a) The <i>CM</i> lies on the line	joining the two particles n	nidway between them	
	The CM lies on the line	joining them at a point wh	ose distance from each pa	rticle is inversely
	b) proportional to the ma	ss of that particle		
	The CM lies on the line	joining them at a point wh	ose distance from each pa	rticle is proportional to
	the square of the mass	of that particle		
	The CM is on the line joint A	oining them at a point who	se distance from each parti	icle is proportional to the
	mass of that particle			
78.	A circular disc rolls down	an inclined plane. The rati	o of rotational kinetic ener	gy to total kinetic energy
	is			
	a) $\frac{1}{2}$	b) $\frac{1}{3}$	c) $\frac{2}{3}$	d) $\frac{3}{4}$
	, 2	-, 3	⁻ , 3	, 4

79.	frictional force	energy to rotational energ	slipping along an inclined	plane of angle θ . The	
	c) Decreases the rotation				
	•	al and translational motion	nc		
80.			xis as shown in the figure. <i>I</i>	A string is wranned over	
00.			eration of 8 rad -s ⁻² is prod		
		inertia of the wheel is $(g =$			
		C .	,		
	4 kg				
	a) $2kg - m^2$	b) $1 kg - m^2$	c) $4 kg - m^2$	d) $8 kg - m^2$	
81.	When a ceiling fan is swit	ched on, it makes 10 revol	utions in the first 3 seconds	s. Assuming a uniform	
	angular acceleration, how	v many rotation it will mak	te in the next 3 seconds		
	a) 10	b) 20	c) 30	d) 40	
82.		bject does not depend upo			
	a) Mass of object	b) Mass distribution		d) Axis of rotation	
83.			esultant, the center of mass	5	
	a) May move but not acce	elerate	b) May Accelerate d) None of the above		
0.4	c) Must not move			:	
84.	bottom	n inclined plane of inclinat	<mark>ion θ. W</mark> hat is the accelerat	ion as the sphere reaches	
		3	2	2	
	a) $\frac{5}{7}g\sin\theta$	b) $\frac{3}{5}g\sin\theta$	c) $\frac{2}{7}g\sin\theta$	d) $\frac{2}{5}g\sin\theta$	
85.	•		I in turn about $x - x$, $y - y$	-	
	through its centre of mas	s <i>O</i> . Its moment of inertia i	S		
	x				
	y ´				
	a) Same about all the thre	ee axes	b) Maximum about $z - z$	axis	
	c) Equal about $x - x$ and	y - y axes	d) Maximum about $y - y$	axis	
86.	The angular velocity of a wheel increases from 100 rps to 300rps in 10 s. The number of revolutions				
	made during that time is				
	a) 600	b) 1500	c) 1000	d) 2000	
87.	If the external torque act	ing on a system $\vec{\tau}=0$, then			
	a) $\omega = 0$	b) $\alpha = 0$	c) $J = 0$	d) F = 0	
88.		inclined plane. Its transla	tional and rotational kineti	c energies are equal. The	
	body is a				
00	a) Solid sphere	b) Hollow sphere	c) Solid cylinder	d) Hollow cylinder	
89.			elocity 10 ms ⁻¹ at an angle		
			tile, between the time at wh	- ·	
		-	of projection in newton-me		
90	a) 25 A man of mass M stands	b) 50	c) 75 gth which is at rest on a frio	d) 100	
90.		•	gth which is at rest on a irro		

man moves relative to ground is a) L b) L/4 c) 3L/4 d) L/3

91.	A Cricket bat is cut at the	focation of its centre of in	ass as shown. Then		
	a) The two pieces will have the same mass				
	b) The bottom piece will	have larger mass			
	c) The handle piece will	have larger mass			
	d) Mass of handle piece i	s double the mass of botto	m piece		
92.	A ballet dancer, dancing	on a smooth floor is spinni	ing about a vertical axis wit	h her arms folded with an	
	angular velocity of 20 ra	d/s. When she stretches h	er arms fully, the spinning s	speed decrease in	
	10 rad/s. If I is the initial	al moment of inertia of the	dancer, the new moment of	finertia is	
	a) 2 <i>I</i>	b) 3 <i>I</i>	c) I/2	d) <i>I</i> /3	
93.	A particle moves in the <i>x</i>	:-y plane under the action	of a force F such that the va	lue of its linear	
	momentum \vec{P} at any time	$e t is p_x = 2 cos t, p_y 2 sin t$			
	The angel θ between \vec{F} and	nd \vec{P} at a given time t will k	oe .		
	a) 90°	b) 0°	c) 180°	d) 30°	
94.	Two objects of masses 20	00g and $500g$ possess velo	ocities $10\hat{\imath} m/s$ and $3\hat{\imath} + 5\hat{\jmath}$	m/s respectively. The	
	velocity of their centre o	-			
	a) $5\hat{i} - 25\hat{j}$	b) $\frac{5}{7}\hat{i} - 25\hat{j}$	c) $5\hat{i} + \frac{25}{7}\hat{j}$	d) $25\hat{i} - \frac{5}{7}\hat{j}$	
95.	Consider a system of two	particles having masses <i>n</i>	n_1 and m_2 . If the particle of	mass m_1 is pushed	
	•		$\frac{1}{\text{ista}}$ istance d , by what distance	• •	
	m_2 move so as to keep th	ne centre of mass of particl	es at the original position		
		b) $\frac{m_1}{m_2}d$		$d)\frac{m_2}{m_4}d$	
	2			m_1	
96.			o <mark>ment of</mark> inertia 200 <i>kg-m</i> ²	about an axis through its	
	centre. Its angular veloci	ty after 3 sec is	c) 10 rad/sec	1) 45 1/	
07	a) 1 rad/sec			•	
97.	centre and end is	of mass <i>m</i> and length <i>L</i> at	oout an axis passing through	i a point illiuway between	
		MI ² NEWTON'S	APPI7MI ²	7MI ²	
	a) $\frac{ML^2}{6}$	b) $\frac{ML^2}{12}$	c) 24	d) $\frac{7ML^2}{48}$	
98.		ssless thread unrolls itself	while falling vertically dow		
	its fall is				
	a) g	b) $\frac{g}{2}$	c) Zero	d) $\left(\frac{2}{3}\right)$ g	
		L		(3)	
99.	About which axis in the f	following figure the mome	nt of inertia of the rectangu	lar lamina is maximum?	
	4				
	a) 1	b) 2	c) 3	d) 4	
100.			,	,	
100. One solid sphere A and another hollow sphere B are of same mass and same outer radius. moments of inertia about their diameters are respectively I_A and I_B such that					
				$I_A d_A$	
	a) $I_A = I_B$	b) $I_A > I_B$	c) $I_A < I_B$	$d) \frac{I_A}{I_B} = \frac{d_A}{d_B}$	
101.	The speed of a homogen	eous solid sphere after roll	ling down an inclined plane	of vertical height h , form	
	rest without sliding, is				
	, 10	12 /	. 6	12 4	
	a) $\sqrt{\frac{10}{7}gh}$	b) \sqrt{gh}	c) $\sqrt{\frac{6}{5}gh}$	d) $\sqrt{\frac{4}{3}gh}$	
102.	V The motion of planets in	ı the solar system is an exa	V	V	
	Dianoto II		r		

b) Momentum

c) Angular momentum

d) Kinetic energy

a) Mass

103.				r momentum form A_0 to $4 A_0$ in
	4s. The magnitude of this torque is			
	a) $\frac{3A_0}{4}$	b) <i>A</i> ₀	c) $4A_0$	d) 12 <i>A</i> ₀
104.	A nucleus reptures	into two nuclear parts wh	ich have their velocity rati	o equal to 2:1. What will be the
	ratio of their nuclea	ar size?		
	a) 2 ^{1/3} :1	b) 1: 2 ^{1/3}	c) 3 ^{1/2} :1	d) 1: 3 ^{1/2}
105.	Three rings each of	mass M and radius R are	arranged as shown in the f	igure. The moment of inertia of
	the system about Y	Y' will be		
	Y			
	Υ'			_
	a) 3 <i>MR</i> ²	b) $\frac{3}{2} MR^2$	c) 5 <i>MR</i> ²	d) $\frac{7}{2} MR^2$
106.		4		of 16 cm apart, the centre of
100.	-	nce x from the object of magnetic from the object of ma	•	or 10 cm apart, the centre of
	a) 10 cm	b) 6 cm	c) 13 cm	d) 3 cm
107.	,	situated in different inerti		u) 5 cm
1071		of a body by both observe		
	=		<mark>th observe</mark> rs must be same	
		gy measured by both ob <mark>se</mark>		
	d) None of the abov			
108.	-		<mark>i horizontal tab</mark> le. A small s	phere of radius $r(r \ll R)$ is
	-			re rolls without slipping. Its
	velocity at the lowe	est point is	9	
	a) $\sqrt{5gR/7}$	b) $\sqrt{3gR/2}$	c) $\sqrt{4gR/3}$	d) $\sqrt{10gR/7}$
109.	The angle turned b	v a body undergoing circu	lar motion depends on time	d) $\sqrt{10gR/7}$ e as $\theta = \theta_0 + \theta_1 t + \theta_2 t^2$. Then
	the angular acceler		1	0 1 2
	a) θ ₁	b) θ ₂	c) 2θ ₁	d) 2θ ₂
110.	A particle of mass r	n moves in the XY plane w	with a velocity v along the s	traight line AB. If the angular
	momentum of the p	particle with respect to ori	gin O is L_A when it is at A a	nd L_B when it is at B , then
	Y			
	B			
	A			
		> X		
	a) $L_A > L_B$	- A		
	b) $L_A > L_B$			
		between L_A and L_B depen	nds upon the slope of the lir	ne <i>AB</i>
	d) $L_A < L_B$	A una us acpen	apon the stope of the III	
	, 11 D			

Two discs of moment of inertia I_1 and I_2 and angular speeds ω_1 and ω_2 are rotating along collinear axes passing through their centre of mass and perpendicular to their plane. If the two are made to rotate combindly along the same axis the rotational KE of system will be

a)
$$\frac{I_1\omega_1 + I_2\omega_2}{2(I_1 + I_2)}$$

b)
$$\frac{(l_1 + l_2)(\omega_1 + \omega_2)^2}{2}$$
 c) $\frac{(l_1\omega_1 + l_2\omega_2)^2}{2(l_1 + l_2)}$

c)
$$\frac{(I_1\omega_1 + I_2\omega_2)^2}{2(I_1 + I_2)}$$

d) None of these

- 112. Circular hole of radius 1 cm is cut off from a disc of radius 6 cm. The centre of hole is 3 m from the centre of the disc. The position of centre of mass of the remaining disc from the centre of disc is
 - a) $-\frac{3}{35}$ cm
- b) $\frac{1}{35}$ cm
- c) $\frac{3}{10}$ cm
- d) None of these
- 113. Two bodies of mass 1 kg and 3 kg have position vectors $\hat{i} + 2\hat{j} + \hat{k}$ and $-3\hat{i} 2\hat{j} + \hat{k}$, respectively. The centre of mass of this system has a position vector
 - a) $-2\hat{\imath} + 2\hat{k}$
- b) $-2\hat{\imath} \hat{\jmath} + \hat{k}$
- c) $2\hat{\imath} \hat{\jmath} \hat{k}$
- d) $-\hat{i} + \hat{j} + \hat{k}$

- 114. A thin hollow cylinder open at both ends:
 - (i) Sliding without rolling
 - (ii) Rolls without slipping, with the same speed

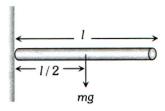
The ratio of kinetic energy in the two cases is

a) 1:1

b) 4:1

c) 1:2

- d) 2:1
- 115. By keeping moment of inertia of a body constant, if we double the time period, then angular momentum of body
 - a) Remains constant
- b) Becomes half
- c) Doubles
- d) quadruples

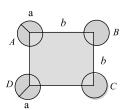


: HINTS AND SOLUTIONS :

1

Weight of the rod will produce the torque

$$\tau = I\alpha \Rightarrow mg \times \frac{l}{2} = \frac{ml^2}{3} \times \alpha$$



Angular acceleration

$$\alpha = \frac{3g}{2l}$$

2 (b)

We calculate moment of inertia of the system about AD

Moment of inertia of each of the sphere A and D

$$AD = \frac{2}{5} Ma^2$$

Moment of inertia of each of the sphere *B* and *C* about AD

$$= \left(\frac{2}{5}Ma^2 + Mb^2\right)$$

Using theorem of parallel axes

: Total moment of inertia

$$I = \left(\frac{2}{5}Ma^2\right) \times 2 + \left(\frac{2}{5}Ma^2 + Mb^2\right) \times 2$$
$$= \frac{8}{5}Ma^2 + 2Mb^2$$

3

 $\frac{\text{Rotational kinetic energy}}{\text{Translatory kinetic energy}} = \frac{\frac{1}{2}mv^2\frac{K^2}{R^2}}{\frac{1}{2}mv^2} = \frac{K^2}{R^2} = \frac{2}{5}$

(d) 4

According to law of conservation of angular momentum, if there is no torque on the system, then the angular momentum remains constant.

5 (d)

From third equation of angular motion, $\omega^2 = \omega_0^2 = 2\alpha$ (Here, $\omega = \frac{\omega_0}{2}$, $\theta = 36 \times 2\pi$) $\therefore \left(\frac{\omega_0}{2}\right)^2 = \omega_0^2 - 2\alpha \times 36 \times 2\pi$

or
$$4 \times 36\pi\alpha = \omega_0^2 - \frac{\omega_0^2}{4}$$

or $4 \times 36\pi\alpha = \frac{3\omega_0^2}{4}$
or $\alpha = \frac{\omega_0^2}{16\times 12\pi}$

According to question again applying the third equation of angular motion

$$\omega^{2} = \omega_{0}^{2} - 2\alpha\theta \qquad (\text{Here, } \omega = 0)$$

$$\therefore \qquad 0 = \left(\frac{\omega_{0}}{2}\right)^{2} - 2 \times \frac{\omega_{0}^{2}.\theta}{16 \times 12\pi}$$
or
$$\theta = 24\pi \quad \text{or} \quad \theta = 12 \times 2\pi$$
But
$$2\pi = 1 \text{ cycle}$$

So,
$$\theta = 12$$
 cycle

(b)

We know

$$L = I\omega$$

$$L^2 = 2KI$$

From Eq. (i)

$$L^{2} = 2K \frac{L}{\omega}$$

$$L = \frac{2K}{\omega}$$

$$L' = \frac{2(\frac{K}{2})}{2\omega} = \frac{L}{4}$$

Moment of inertia of a rod about one end = $\frac{ML^2}{3}$

As,
$$I = I_1 + I_2 + I_3$$

$$\therefore I = 0 + \frac{ML^2}{3} + \frac{ML^2}{3} = \frac{2ML^2}{3}$$

$$I = m_1 r_1^2 + m_2 r_2^2$$

$$= \frac{200}{1000} \left(\frac{30}{100}\right)^2 + \frac{300}{1000} \left(\frac{20}{100}\right)^2 = 0.03 \text{ kg m}^2$$

A couple consists of two equal and opposite forces acting at a separation, so that net force becomes zero. When a couple acts on a body it rotates the body but does not produce any translatory motion. Hence, only rotational motion is produced.

10 (a)

 $m_1 = 1 \text{ kg}, m_2 = 2 \text{ kg}, m_3 = 3 \text{ kg}$ Position of centre of mass (2, 2, 2,)

$$m_4 = 4 \text{ kg}$$

New position of centre of mass (0, 0, 0).

For initial position

$$X_{\text{CM}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$
$$2 = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{1 + 2 + 3}$$

$$m_1 x_1 + m_2 x_2 + m_3 x_3 = 12$$

Similarly, $m_1y_1 + m_2y_2 + m_3y_3 = 12$ and $m_1z_1 + m_2z_2 + m_3z_3 = 12$

For new position,

$$X'_{\text{CM}} = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + m_4 x_4}{m_1 + m_2 + m_3 + m_4}$$

$$0 = \frac{12 + 4 \times x_4}{1 + 2 + 3 + 4}$$

$$4x_4 = -12$$

$$x_4 = -3$$
Similarly, $y_4 = -3$

$$z_4 = -3$$

∴ Position of fourth mass (-3, -3, -3)

11 **(b)**

We know that rate of change of angular momentum (J) of a body is equal to the external torque (τ) acting upon the body.

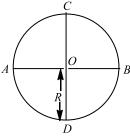
ie.
$$\frac{dJ}{dt} = \tau$$
Given, $J_1 = J$, $J_2 = 5J$

$$\Delta J = J_2 - J_1 = 5J - J = 4J$$
Hence, $\tau = \frac{4}{5}J$

12 **(d**)

$$\vec{v}_{cm} = \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} = \frac{2 \times 3 + 3 \times 2}{2 + 3} = \frac{12}{5}$$
$$= 2.4 m/s$$

13 **(b)**


Moment of inertia of a uniform rod about one end= $\frac{ml^2}{3}$

∴ Moment of inertia of the system

$$=2\times \left(\frac{M}{2}\right)\frac{(L/2)^2}{3}=\frac{ML^2}{12}$$

14 **(d**)

The moment of inertia of the disc about an axis parallel to its plane is

$$I_{t} = I_{d} + MR^{2}$$

$$\Rightarrow I = \frac{1}{4}MR^{2} + MR^{2}$$

$$= \frac{5}{4}MR^{2}$$
or
$$MR^{2} = \frac{4I}{5}$$

Now, moment of inertia about a tangent perpendicular to its plane is

$$I' = \frac{3}{2}MR^2 = \frac{3}{2} \times \frac{4}{5}I = \frac{6}{5}I$$

15 **(b)**

Moment of inertia of a ring of mass M and radius R about an axis passing through the centre and perpendicular to the plane

$$I = MR^2$$
 ...(i)

Moment of inertia of a ring about its diameter

$$I_{diameter} = \frac{MR^2}{2} = \frac{I}{2}$$
 [Using (i)]

16 **(d)**

Radius of gyration of circular disc $k_{disc} = \frac{R}{\sqrt{2}}$ Radius of gyration of circular ring $k_{ring} = R$

Ratio =
$$\frac{k_{disc}}{k_{ring}} = \frac{1}{\sqrt{2}}$$

17 **(c)**

For translator motion the force should be applied on the centre of mass of the body so we have to calculate the location of centre of mass of *T* shaped object.

Let mass of rod AB is m so the mass of rod CD will be 2m.

Let y_1 is the centre of mass of rod AB and y_2 is the centre of mass of rod CD. We can consider that whole mass of the rod is placed at their respective centre of mass ie, mass m is placed at y_1 and mass 2m is placed at y_2 .

Taking point c at the origin position vector of points y_1 and y_2 can be written as

$$\mathbf{r}_1 = 2l\mathbf{j}, \mathbf{r}_2 = l\mathbf{j}$$

and

NEWTON'

$$m_1 = m$$
 and $m_2 = 2m$

Position vector of centre of mass of the system

$$r_{\text{CM}} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m + m_2} = \frac{m_2 l \hat{\mathbf{j}} + 2m l \hat{\mathbf{j}}}{m + 2m} = \frac{4m l \hat{\mathbf{j}}}{3m} = \frac{4l \hat{\mathbf{j}}}{3}$$

18 **(b)**

Here,
$$m = 8 \text{ kg}, r = 40 \text{ cm} = \frac{2}{5} \text{m},$$

 $\omega = 12 \text{ rad s}^{-1}, I = 0.64 \text{ kg m}^2$
Total KE = $\frac{1}{2}I\omega^2 + \frac{1}{2}mv^2$
= $\frac{1}{2}I\omega^2 + \frac{1}{2}mr^2\omega^2$
= $\frac{1}{2} \times 0.64 \times 15^2 + \frac{1}{2} \times 8 \times \left(\frac{2}{5}\right)^2 \times 15^2 = 216 \text{ J}$

19 (a)

In the pulley arrangement $|\vec{a}_1| = |\vec{a}_2| = a = \left(\frac{m_1 - m_2}{m_1 + m_2}\right)g$

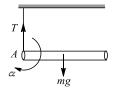
But \vec{a}_1 is in downward direction and in the upward direction ie, $\vec{a}_2 = -\vec{a}_1$

: Acceleration of centre of mass

$$\vec{a}_{CM} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2}{m_1 + m_2}$$

$$= \frac{m_1 \left[\frac{m_1 - m_2}{m_1 + m_2} \right] g - m_2 \left[\frac{m_1 - m_2}{m_1 + m_2} \right] g}{(m_1 + m_2)}$$

$$= \left[\frac{m_1 - m_2}{m_1 + m_2} \right]^2 g$$

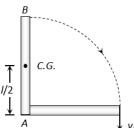

20 **(c**)

Kinetic energy $E = \frac{L^2}{2L}$

If angular momenta are equal then $E \propto \frac{1}{I}$ Kinetic energy E = K [Given in the problem] If $I_A > I_B$ then $K_A < K_B$

21 **(d)**

When one string is cut off, the rod will rotate about the other point A. Let α be the linear acceleration of centre of mass of the rod and α be the linear acceleration of centre of mass of the rod and α be the angular acceleration of the rod about A. As is clear from figure,



$$mg - T = ma$$
 ...(i)
 $\alpha = \frac{\tau}{I} = \frac{mg(l/2)}{ml^2/3} = \frac{3g}{4}$...(ii)
 $a = r\alpha = \frac{l}{2}\alpha = \frac{l}{2}\frac{3g}{2l} = \frac{3g}{4}$

From Eq. (i),
$$T = mg - ma = mg - \frac{3mg}{4} = \frac{mg}{4}$$

22 **(b)**

In this process potential energy of the metre stick will be converted into rotational kinetic energy

P.E. of meter stick = $mg\left(\frac{l}{2}\right)$

Because its centre of gravity lies at the middle point of the rod

Rotational kinetic energy $E = \frac{1}{2}I\omega^2$

I= M.I. of metre stick about point $A=\frac{ml^2}{3}$ $\omega=$ Angular speed of the rod while striking the ground

 v_B = Velocity of end B of metre stick while striking the ground

By the law of conservation of energy,

$$mg\left(\frac{l}{2}\right) = \frac{1}{2}I\omega^2 = \frac{1}{2}\frac{ml^2}{3}\left(\frac{v_B}{l}\right)^2$$

By solving we get, $v_B = \sqrt{3gl} = \sqrt{3 \times 10 \times 1} = 5.4m/s$

23 **(b)**

Torque zero means, α zero

$$\therefore \frac{d^2\theta}{dt^2} = 0 \Rightarrow 12t - 12 = 0$$

 $\therefore t = 1 \text{ second}$

24 **(a)**

As torque $\tau = \frac{dL}{dt}$

If $\tau = 0$, then L =constant.

25 (d

$$a = \frac{g \sin \theta}{1 + \frac{K^2}{R^2}} = \frac{g \sin \theta}{1 + \frac{2}{5}} = \frac{g/2}{7/5} = \frac{5g}{14}$$

As $\theta = 30^{\circ}$ and $\frac{K^2}{R^2} = \frac{2}{5}$

26 **(a**

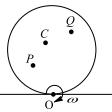
$$\alpha = \frac{\tau}{I} = \frac{30}{2} = 15 \, rad/s^2$$

$$\therefore \theta = \omega_0 t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} \times (15) \times (10)^2$$

$$= 750 \, rad$$

27 (d)

For a ring $K^2 = r^2$ then


$$v^2 = \sqrt{\frac{2gh}{1 + \frac{K^2}{r^2}}}$$

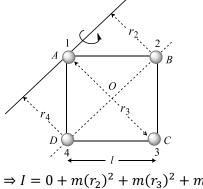
 $v^2 = \frac{2gh}{2} = gh$

 $v = \sqrt{gh}$

28 **(a**)

In case of pure rolling bottommost point is the instantaneous centre of zero velocity.

Velocity of any point on the disc, $v = r\omega$, where r is distance of point from O.

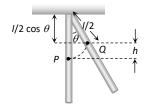

$$r_Q > r_C > r_P$$

 $v_Q > v_C > v_P$

29 **(b)**

$$r_2 = r_4 = OA = \frac{l}{\sqrt{2}}$$
 and $r_3 = l\sqrt{2}$

Moment of inertia of the system about given axis $I = I_1 + I_2 + I_3 + I_4$


$$\Rightarrow I = 0 + m(r_2)^2 + m(r_3)^2 + m(r_4)^4$$

$$\Rightarrow I = m\left(\frac{l}{\sqrt{2}}\right)^2 + m\left(l\sqrt{2}\right)^2 + m\left(\frac{l}{\sqrt{2}}\right)^2 \therefore I$$

$$= 3ml^2$$

30 **(d)**

Centre of mass of a stick lies at the mid point and when the stick is displaced through an angle 60° it rises upto height 'h' from the initial position

From the figure $h = \frac{l}{2} - \frac{l}{2}\cos\theta = \frac{l}{2}(1 - \cos\theta)$ Hence the increment in potential energy of the stick $= mgh = mg\frac{l}{2}(1 - \cos\theta) = 0.4 \times 10 \times \frac{1}{2}(1 - \cos 60^\circ) = 1J$

31 **(b)**

Co-ordinate of CM is given by

$$X_{\text{CM}} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$$

$$8m$$

$$O$$

$$2m$$

$$3m$$

$$m_2$$

$$m_2$$

Taking parts *A* and *B* as two bodies of same system

$$\begin{split} m_1 &= l \times b \times \sigma = 8 \times 2 \times \sigma = 16\sigma \\ m_2 &= l \times b \times \sigma = 6 \times 2 \times \sigma = 12\sigma \\ \text{Choosing O as origin,} \end{split}$$

$$x_1 = 1 \text{ m}, x_2 = 2 + 3 = 5 \text{ m}$$

$$X_{CM} = \frac{16\sigma \times 1 + 12\sigma \times 5}{16\sigma + 12\sigma} = \frac{19}{7}$$

$$= 2.7 \text{ m from } 0$$

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \Rightarrow 200 = \frac{1}{2} \alpha (5)^2 \Rightarrow \alpha$$
$$= 16 rad/s^2$$

33 **(d)**

The moment of inertia of the uniform rod about an axis through one end and perpendicular to its length is

$$I = \frac{ml^2}{3}$$

Where m is mass of rod and l is length.

Torque ($\tau = I\alpha$) acting on centre of gravity of rod is given by

$$\tau = mg \frac{1}{2}$$
or
$$I\alpha = mg \frac{1}{2}$$
or
$$\frac{ml^2}{3}\alpha = mg \frac{1}{2}$$
or
$$\alpha = \frac{3g}{2l}$$

34 **(c)**

$$m_1 r_1 = m_2 r_2$$

$$\frac{r_1}{r_2} = \frac{m_2}{m_1} \quad \therefore r \propto \frac{1}{m}$$

35 (c)

Applying the principle of conservation of angular momentum,

$$(I_1 + I_2)\omega = I_1\omega_1 + I_2\omega_2$$

$$(6 + I_2)\frac{400}{60} \times 2\pi = 6 \times \frac{600}{60} \times 2\pi + I_2 \times 0$$
Which gives, $I_2 = 3 \text{ kg m}^2$

36 **(d)**

NEWTON'

When a particle is projected with a speed v at 45° with the horizontal then velocity of the projectile at maximum height.

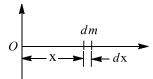
$$v' = v \cos 45^\circ = \frac{v}{\sqrt{2}}$$

Angular momentum of the projectile about the point of projection

$$= mv'h$$

$$= m\frac{v}{\sqrt{2}}h = \frac{mvh}{\sqrt{2}}$$

37 **(d)**


Melting of ice produces water which will spread over larger distance away from the axis of rotation. This increases the moment of inertia so angular velocity decreases

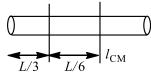
38 **(c)**Since gun-shot system is an isolated closed system, its centre of mass must remain at rest.

39 **(a)** $L = \frac{1}{2}MR^2\omega = \text{constant} : \omega \propto \frac{1}{R^2} [\text{If } m = \text{constant}]$

If radius is reduced to half then angular velocity will be four times

The mass of considered element is

 $dm = \lambda dx = \lambda_0 x dx$


$$\therefore x_{\text{CM}} = \frac{\int_0^L x \, dm}{\int dm} = \frac{\int_0^L x (\lambda_0 x dx)}{\int_0^L \lambda_0 x dx}$$

$$= \frac{\lambda \left[\frac{x^3}{3}\right]_0^L}{\lambda_0 \left[\frac{x^2}{2}\right]_0^L} = \frac{\lambda_0 \frac{L^3}{3}}{\lambda_0 \frac{L^2}{2}} = \frac{2}{3}L$$

41 **(b)**

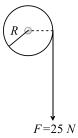
$$I_{\rm CM} = \frac{ML^2}{12}$$

(about middle point)

$$\therefore I = I_{\text{CM}} + Mx^{2}$$

$$= \frac{ML^{2}}{12} + M\left(\frac{L}{6}\right)^{2}$$

$$I = \frac{ML^{2}}{9}$$


42

$$L = \sqrt{2IE}$$
. If E are equal then $\frac{L_1}{L_2} = \sqrt{\frac{I_1}{I_2}} = \sqrt{\frac{I}{2I}} = \frac{1}{\sqrt{2}}$

43

Here,
$$M = 20kg$$
, $R = 20cm = \frac{1}{5}m$

Moment of inertia of flywheel about its axis is

$$I = \frac{1}{2}MR^2 = \frac{1}{2} \times 20kg \times \left(\frac{1}{5}m\right)^2$$
$$= 0.4kgm^2$$

As $\tau = I\alpha$

Where α is the angular acceleration

$$\therefore \alpha = \frac{\tau}{I} = \frac{FR}{I} = \frac{25 \times \frac{1}{5}}{0.4} = \frac{5Nm}{0.4kam^2} = 12.5s^{-2}$$

44 (d)

$$m_1 = 2kg, m_2 = 4kg, \vec{v}_1 = 20m/s, \vec{v}_2 = -10m/s$$

 $\vec{v}_{cm} = \frac{m_1\vec{v}_1 + m_2\vec{v}_2}{m_1 + m_2} = \frac{2 \times 20 - 4 \times 10}{2 + 4} = 0 \text{ m/s}$

45 (c)

Moment of inertia of whole disc about an axis through centre of disc and perpendicular to its plane is $I = \frac{1}{2}mr^2$

As one quarter of disc is removed, new mass,

$$m' = \frac{3}{4}m$$

$$\therefore I' = \frac{1}{2} \left(\frac{3}{4} m \right) r^2 = \frac{3}{8} m r^2$$

46 **(b)**

$$r_1 = 0, r_2 = PQ, r_3 = PR$$

Distance of centre of mass from *P* is

$$r = \frac{r_1 + r_2 + r_3}{3} = \frac{0 + PQ + PR}{3} = \frac{PQ + PR}{3}$$

47 **(c)**

$$K = \frac{p^2}{2m}$$

$$p^2 = 2Km$$

This is an equation of parabola. Hence, (c) is correct.

(a)

By the conservation of energy P.E. of rod = Rotational K.E.

$$mg\frac{l}{2}\sin\alpha = \frac{1}{2}I\omega^2 \Rightarrow mg\frac{l}{2}\sin\alpha = \frac{1}{2}\frac{ml^2}{3}\omega^2$$

$$\Rightarrow \omega = \sqrt{\frac{3g\sin\alpha}{l}}$$

But in the problem length of the rod 2L is given

$$\Rightarrow \omega = \sqrt{\frac{3g\sin\alpha}{2L}}$$

49

As $\vec{F}_{\text{ext}} = 0$, hence momentum remains conserved and final momentum = initial momentum = mv

50 **(a)**

 $I_{\text{remaining}} = I_{\text{whole}} - I_{\text{removed}}$

or
$$I = \frac{1}{2}(9M)(R^2) - \left[\frac{1}{2}m\left(\frac{R}{3}\right)^2 + \frac{1}{2}m\left(\frac{2R}{3}\right)^2\right]$$

Here,
$$m = \frac{9M}{\pi R^2} \times \pi \left(\frac{R}{3}\right)^2 = M$$

Substituting in Eq. (i), we have

$$I = 4MR^2$$

Time of descent
$$t = \frac{1}{\sin \theta} \sqrt{\frac{2h}{g} \left(1 + \frac{K^2}{R^2}\right)}$$

For solid sphere $\frac{K^2}{R^2} = \frac{2}{E}$

For hollow sphere $\frac{K^2}{R^2} = \frac{2}{3}$

$$\operatorname{As}\left(\frac{K^2}{R^2}\right)_{\operatorname{Hollow}} > \left(\frac{K^2}{R^2}\right)_{\operatorname{Solid}}$$

i.e. solid sphere will take less time so it will reach the bottom first

52 **(c)**

Distance between the centre of spheres = 12R

∴ Distance between their surfaces = 12R - (2R + R)

$$(2R + R) = 9R$$

Since there is no external force, hence centre of mass must remain unchanged and hence

$$\Rightarrow m_1 r_1 = m_2 r_2 \Rightarrow Mx = 5M(9R - x) \Rightarrow x$$
$$= 7.5R$$

53 **(c)**

Kinetic energy $K = \frac{J^2}{2I}$

where *J* is angular momentum and *I* the moment of inertia.

$$\therefore K_1 = \frac{J^2}{2I}, K_2 = \frac{\left(J + \frac{10}{100}J\right)^2}{2I}$$

$$\therefore \quad \frac{K_1}{K_2} = \frac{(100)^2}{(110)^2} = \frac{100}{121}$$

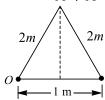
$$\frac{K_2}{K_2}$$
 (110)² 121
% change = $\frac{K_2 - K_1}{K_1} = \frac{K_2}{K_1} - 1$
= $\frac{121}{100} - 1 = 21\%$

54 **(d)**

On applying law of conservation of angular momentum

$$I_1\omega_1=I_2\omega_2$$

For solid sphere,

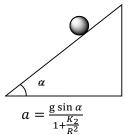

$$I = \frac{2}{5}mr^2 \Rightarrow \frac{2}{5}mr_1^2\omega_1 = \frac{2}{5}mr_2^2\omega_2$$

$$r^2\omega = \left(\frac{r}{n}\right)^2\omega_2 \Rightarrow \omega_2 = n^2\omega$$

55 **(c)**

$$x_{CM} = \frac{\sum m_i x_i}{\sum m_i}$$
, Refer to figure

$$= \frac{M \times 0 + M \times 1 + M \times 2}{M + M + M} = 1$$


$$y_{CM} = \frac{\sum m_i y_i}{\sum m_i}$$

$$= \frac{M \times 0 + M(2\sin 60^{\circ}) + M \times 0}{M + M + M}$$

$$=\frac{\sqrt{3}M}{3M}=\frac{1}{\sqrt{3}}$$

 \therefore Position vector of centre of mass is $(\hat{\mathbf{i}} + \frac{1}{\sqrt{3}}\hat{\mathbf{j}})$

The acceleration of the body which is rolling down an inclined plane of angle α is

where K = radius of gyration,

R =radius of body.

Now, here the body is a uniform solid disc.

So,
$$\frac{K^2}{R^2} = \frac{1}{2}$$

$$\therefore \qquad a = \frac{g \sin \alpha}{1 + \frac{1}{2}}$$

or
$$a = \frac{g \sin \alpha}{3/2}$$

or
$$a = \frac{2g \sin \alpha}{3}$$

57 **(c)**

In rotational motion of a rigid body, the centre of mass of the body moves uniformly in a circular path.

58 (a)

For centre of mass,

$$x_{cm} = \frac{2 \times 1 + 4 \times 1 + 4 \times 0}{2 + 4 + 4} = \frac{6}{10} = \frac{3}{5}$$
$$y_{cm} = \frac{2 \times 0 + 4 \times 1 + 4 \times 1}{2 + 4 + 4} = \frac{8}{10} = \frac{4}{5}$$

 $\therefore \frac{\mathsf{Coordinate}}{\mathsf{for}} \, cm = \left(\frac{3}{5}\hat{\imath}, \frac{4}{5}\hat{\jmath}\right)$

Where \hat{i} and \hat{j} are unit vector along x and y axis

59 **(b**)

NEWTON

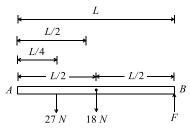
Rotational kinetic energy of flywheel

$$K = 360 \, \text{J}$$

Angular speed of flywheel (ω) = 20 rads⁻¹

Rotational kinetic energy, $K = \frac{1}{2}I\omega^2$

 $\therefore \text{ Moment of inertia, } I = \frac{2K}{\omega^2}$ $= \frac{2 \times 360}{(20)^2} = 1.8 \text{ kg} - \text{m}^2$


60 **(a)**

In the absence of external torque angular momentum remains constant

61 (a)

Mass of a rod, m = 1.8kg

: Weight of a rod, $W = mg = 1.8kg \times 10ms^{-2} = 18 N$

As the rod is uniform, therefore weight of the rod is acting at its midpoint

Taking moments about A,

$$27 \times \frac{L}{4} + 18 \times \frac{L}{2} = F \times L$$

$$\Rightarrow FL = \frac{L}{4} [27 + 36] = \frac{63L}{4} \Rightarrow F = \frac{63}{4} = 16N$$

62 **(b)**

$$\frac{K_1}{K_2} = \frac{\frac{p_1^2}{2m_1}}{\frac{p_2^2}{2m_2}} = \frac{m_2}{m_1} = \frac{4m}{m} = 4:1 \quad (\because p_1 = p_2)$$

63

$$\alpha = \frac{2\pi(n_2 - n_1)}{t} = \frac{2\pi\left(0 - \frac{60}{60}\right)}{60} = \frac{-2\pi}{60}$$
$$= \frac{-\pi}{30} rad/sec^2$$
$$\therefore \tau = I\alpha = \frac{2 \times \pi}{30} = \frac{\pi}{15} N - m$$

64

If external force is non-zero then acceleration of centre of mass must be non-zero $\left(a_0 = \frac{F_{\text{ext}}}{M} \neq 0\right)$. However, at a particular instant of time velocity of centre of mass may be zero or non-zero. Hence 68 (b) option (b) is correct.

65 (d)

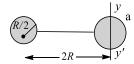
> Position vector of the point at which force is acting

$$\overrightarrow{r_1} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$$

But we have to calculate the torque about another point. So its position vector about that another

$$\vec{r_1'} = \vec{r_1} - \vec{r_2} = (\hat{\imath} + 2\hat{\jmath} + 3\hat{k}) - (3\hat{\imath} - 2\hat{\jmath} - 3\hat{k})$$
$$= -2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}$$

Now,
$$\vec{t} = \vec{r_1'} \times \vec{F} = (-2\hat{\imath} + 4\hat{\jmath} + 6\hat{k}) \times (4\hat{\imath} - 5\hat{\jmath} + 3\hat{k})$$


$$\vec{\tau} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ -2 & 4 & 6 \\ 4 & -5 & 3 \end{vmatrix}$$

$$= \hat{\imath}(12 + 30) - \hat{\jmath}(-6 - 24) + \hat{k}(10)$$

$$-16)$$
70

$$= (42\hat{\imath} + 30\hat{\jmath} - 6\hat{k})N - m$$

(a) 66

Moment of inertia of the system about yy' $I_{vv'}$ =Moment of inertia of sphere P about yy' + Moment of inertia of sphere Q about yy'Moment of inertia of sphere P about yy"

$$= \frac{2}{5} M \left(\frac{R}{2}\right)^2 + M(x)^2$$

$$= \frac{2}{5} M \left(\frac{R}{2}\right)^2 + M(2R)^2$$

$$= \frac{MR^2}{10} + 4MR^2$$

Moment of inertia of sphere Q about yy'' is

Now, $I_{yy'} = \frac{MR^2}{10} + 4MR^2 + \frac{2}{5}M\left(\frac{R}{2}\right)^2 = \frac{21}{5}MR^2$

67

$$E = \frac{L^2}{2I} :: E \propto L^2 \Rightarrow \frac{E_2}{E_1} = \left(\frac{L_2}{L_1}\right)^2$$

$$\frac{E_2}{E_1} = \left[\frac{L_1 + 200\% \text{ of } L_1}{L_1}\right] = \left[\frac{L_1 + 2L_1}{L_1}\right]^2 = (3)^2$$

$$\Rightarrow E_2 = 9E_1$$

Increment in kinetic energy $\Delta E = E_2 - E_1 =$

 $\Delta E = 8E_1 : \frac{\Delta E}{E_3} = 8$ or percentage increase = 800%

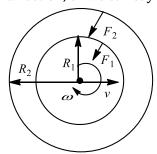
When pulley has a finite mass M and radius R, then tension in two segments of string are different.

 $a = \frac{m}{m + \frac{M}{2}} g = \frac{2m}{2m + M} g$

Linear momentum p and kinetic energy K are interrelated as

 $K = \frac{p^2}{2m}$ or $p = \sqrt{2mK}$, hence zero momentum implies zero kinetic energy and vice versa.

In free space neither acceleration due to gravity nor external torque act on the rotating solid space. Therefore, taking the same mass of sphere if radius is increased then moment of inertia,


rotational kinetic energy and angular velocity will change but according to law of conservation of momentum, angular momentum will not change.

71 **(d)**

From $E=\frac{1}{2}r\omega^2$, we find that when frequency (n) is doubled, $\omega=2\pi n$ is doubled, ω^2 becomes 4 times. As E reduces to half, I must have been reduced to $\frac{1}{8}$ th. From $L=I\omega$, L becomes $\frac{1}{8}\times 2=\frac{1}{4}$ times ie, 0.25 L

72 **(d)**

Since ω is constant, v would also be constant. So, no net force or torque is acting on ring. The force experienced by any particle is only along radical direction, or we can say the centripetal force.

The force experienced by inner part, $F_1 = m\omega^2 R_1$ and the force experienced by outer part, $F_2 = m\omega^2 R_2$

$$\frac{F_1}{F_2} = \frac{R_1}{R_2}$$

73 **(d)**

Angular velocity is a axial vector

74 **(b**)

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3 + m_4 x_4}{m_1 + m_2 + m_3 + m_4}$$

$$X = \frac{0 + 40 x_4}{100} \Rightarrow 3 = \frac{40 x_4}{100}$$

$$x_4 = \frac{300}{40} = 7.5$$

Similarly $y_4 = 7.5$ and $z_4 = 7.5$

75 **(d)**

External force acting on the system is given as

$$\mathbf{F}_{\mathrm{ext}} = M\mathbf{a}_{\mathrm{CM}}$$

ie, a_{CM} lies in the direction of F_{ext} .

Here,
$$\mathbf{F}_{\text{ext}} = 5(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}})$$

$$\mathbf{a}_{CM} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} - 5\hat{\mathbf{k}}$$

Since, \mathbf{F}_{ext} and \mathbf{a}_{CM} are not lying in the same direction, given data is incorrect.

76 **(d)**

According to conservation of angular momentum,

$$I\omega$$
 =constant

ie, we can write

$$I_1\omega_1 = I_2\omega_2$$
 or
$$MR^2\omega = (M+4m)R^2\omega_2$$

or
$$\omega_2 = \left(\frac{M}{M+4m}\right)\omega$$

77 **(b)**

We know $m_1 r_1 = m_2 r_2 \Rightarrow m \times r = \text{constant} : r \propto \frac{1}{m}$

78 **(b)**

Rotational kinetic energy $K_R = \frac{1}{2}I\omega^2$

$$K_R = \frac{1}{2} \times \frac{MR^2}{2} \times \omega^2 = \frac{1}{4} M v^2 \quad [\because v = R\omega]$$

Translational kinetic energy $K_T = \frac{1}{2}Mv^2$

Total kinetic energy = $K_T + K_R$

$$= \frac{1}{2}Mv^2 + \frac{1}{4}Mv^2 = \frac{3}{4}Mv^2$$

 $\frac{\text{Rotational kinetic energy}}{\text{Total kinetic energy}} = \frac{\frac{1}{4}Mv^2}{\frac{3}{4}Mv^2} = \frac{1}{3}$

79 **(a)**

When a body rolls down without slipping along an inclined plane of inclination θ , it rotates about a horizontal axis through its centre of mass and also its centre of mass moves. Therefore, rolling motion may be regarded as a rotational motion about an axis through its centre of mass plus a translational motion of the centre of mass. As it rolls down, it suffers loss in gravitational potential energy provided translational energy due to frictional force is converted into rotational energy.

80 (a)

NEWTON'

Given, r = 0.4m, $\alpha = 8 \ rad \ s^{-2}$ m = 4kg, I = ?Torque, $\tau = I\alpha = mgr \Rightarrow 4 \times 10 \times 0.4 = I \times 8$ $\Rightarrow I = \frac{16}{8} = 2kg - m^2$

81 **(c)**

Angle turned in three second, $\theta_{3s} = 2\pi \times 10 = 20\pi \, rad$

From
$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \Rightarrow 20\pi = 0 + \frac{1}{2} \alpha \times (3)^2$$

$$\Rightarrow \alpha = \frac{40\pi}{9} rad/s^2$$

Now angle turned in 6 sec from the starting

$$\theta_{6s} = \omega_0 t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} \times \left(\frac{40\pi}{9}\right) \times (6)^2$$
= 80\pi rad

∴ angle turned between t = 3s to t = 6s $\theta_{\text{last } 3s} = \theta_{6s} - \theta_{3s} = 80\pi - 20\pi = 60\pi$ Number of revolution = $\frac{60\pi}{2\pi} = 30 \ rev$

82 **(c)**

Moment of inertia $I = MR^2$ M = mass of object, R =distance of centre of mass from axis of rotation.

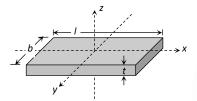
Hence, moment of inertia does not depend upon angular velocity.

83 (a)

According to the equation of motion of the centre of mass

$$M \mathbf{a}_{CM} = \mathbf{F}_{ext}$$

If $\mathbf{F}_{ext} = 0$, $\mathbf{a}_{CM} = 0$


$$v_{CM} = constant$$

ie, if no external force acts on a system the velocity of its centre of mass remains constant. Thus, the centre of mass may move but not accelerate.

84 (a

$$a = \frac{g\sin\theta}{1 + \frac{K^2}{R^2}} = \frac{g\sin\theta}{1 + \frac{2}{5}} = \frac{5}{7}g\sin\theta$$

85 **(b**)

M.I. of block about x axis, $I_x = \frac{m}{12}(b^2 + t^2)$

M.I. of block about y axis, $I_y = \frac{m}{12}(l^2 + t^2)$

M.I. of block about z axis, $I_z = \frac{m}{12}(l^2 + b^2)$

As $I > b > t :: I_z > I_y > I_x$

86 **(d**

Angular displacement during time

$$\theta = (\omega_2 - \omega_1)t$$
= $(2\pi n_2 - 2\pi n_1)t$
= $(600\pi - 200\pi) \times 10$
= $4000 \pi \text{ rad}$

Therefore, number of revolutions made during this time

$$=\frac{4000\pi}{2\pi}=2000$$

87 **(b)**

 $\tau = I\alpha$, if $\tau = 0$ then $\alpha = 0$ because moment of inertia of any body cannot be zero

88 (d)

When a body rolls down an inclined plane, it is accompanied by rotational and translational kinetic energies.

Rotational kinetic energy = $\frac{1}{2}I\omega^2 = K_R$

Where I is moment of inertia and ω the angular velocity.

Translational kinetic energy

$$=\frac{1}{2}mv^2=K_r=\frac{1}{2}m(r\omega)^2$$

where m is mass, v the velocity and ω the angular velocity.

Given,

Translational KE=rotational KE

$$\frac{1}{2}mv^2 = \frac{1}{2}I\omega^2$$
Since, $v = r\omega$

$$\therefore \qquad \frac{1}{2}m(r^2\omega^2) = \frac{1}{2}I\omega^2$$

$$\Rightarrow \qquad I = mr^2$$

We know that mr^2 is the moment of inertia of hollow cylinder about its axis is where m is mass of hollow cylinderical body and r the radius of cylinder.

89 **(b**

$$\tau = \frac{dL}{dt} = m(u^2 \cos^2 \theta) = (1)(10)^2 \cos^2 45^\circ = 50$$

Nm

90 **(c)**

If speed of man relative to plank be v, then it can be shown easily that speed of man relative to ground

$$v_{\rm mg} = v \frac{M}{\left(M + \frac{M}{3}\right)} = \frac{3}{4}v$$

∴ Distance covered by man relative to ground

$$= L \frac{v_{\text{mg}}}{v} = \frac{L}{v} \frac{3}{4} v = \frac{3L}{4}$$

91 **(b**

Centre of mass is closer to massive part of the body therefore the bottom piece of bat has larger mass

92 **(a)**

Angular momentum of system remains constant

$$I \propto \frac{1}{\omega} \Rightarrow \frac{I_2}{I_1} = \frac{\omega_1}{\omega_2} = \frac{20}{10} \Rightarrow I_2 = 2I_1 = 2I$$

93 **(a)**

$$P = \sqrt{p_x^2 + p_y^2}$$

= $\sqrt{(2\cos t)^2 + (2\sin t)^2} = 2$

If *m* be the mass of the body, then kinetic energy

$$=\frac{p^2}{2m}=\frac{(2)^2}{2m}=\frac{2}{m}$$

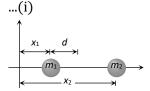
Since kinetic energy does not change with time, both work done and power are zero

Now Power = $Fv \cos \theta = 0$

As
$$F \neq 0$$
, $v \neq 0$

$$\therefore \cos \theta = 0$$

Or
$$\theta = 90^{\circ}$$


As direction of \vec{p} is same that $\vec{v}(\because \vec{p} = m\vec{v})$ hence angle between \vec{F} and \vec{p} is equal to 90°

94 (c)

$$\begin{split} \vec{v}_{cm} &= \frac{m_1 \vec{v}_1 + m_2 \vec{v}_2}{m_1 + m_2} \\ &= \frac{200 \times 10 \hat{\imath} + 500 \times (3 \hat{\imath} + 5 \hat{\jmath})}{200 + 500} \\ \vec{v}_{cm} &= 5 \hat{\imath} + \frac{25}{7} \hat{\jmath} \end{split}$$

95 **(b)**

Initial position of centre of mass $r_{cm} = \frac{m_1x_1 + m_2x_2}{m_1 + m_2}$

If the particles of mass m_1 is pushed towards the centre of mass of the system through distance d and to keep the centre of mass at the original position let second particle be displaced through distance d' away from the centre of mass

Now
$$r_{cm} = \frac{m_1(x_1+d)+m_2(x_2+d')}{m_1+m_2}$$
 ...(ii)

Equating (i) and (ii)

$$\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = \frac{m_1 (x_1 + d) + m_2 (x_2 + d')}{m_1 + m_2}$$
Pur solving $d' = \frac{m_1}{m_1} d$

By solving $d' = -\frac{m_1}{m_2}d$

Negative sign shows that particle m_2 should be displaced towards the centre of mass of the system

96 **(d)**

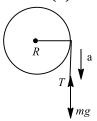
$$\omega = \omega_0 + \alpha t \Rightarrow \omega = 0 + \left(\frac{\tau}{l}\right)t \qquad \text{[As } \tau = l\alpha\text{]}$$

$$\omega = 0 + \frac{1000}{200} \times 3 = 15rad/s$$

97 **(d)**

$$I = I_{CM} + Mx^{2}$$

$$= \frac{ML^{2}}{12} + M \left[\frac{L}{4}\right]^{2}$$


$$= \frac{ML^{2}}{12} + \frac{ML^{2}}{16} = \frac{7ML^{2}}{48}$$

$$A I \qquad A I_{CM}$$

$$L/4 \qquad L/4 \qquad L/4$$

98 (d)

Let a be acceleration of fall of the thread, then net force acting downwards, balances the force due to tension (T) in the thread.

$$mg - T = ma$$

$$\Rightarrow mg - ma = T \qquad ...(i)$$

Also torque (also known as moment or couple acts on the system).

 $\tau = \text{force} \times$

perpendicular distance axis of rotation

$$\tau = T \times R$$

From Eq. (i),

$$\tau = m(g - a) \times R \qquad ...(ii)$$

Let I is moment of inertia of reel and α the angular acceleration, then torque is

$$\tau = I\alpha$$
 ...(iii)

where, $I = \frac{1}{2}MR^2$, $\alpha = \frac{a}{R}$

Equating Eqs. (ii) and (iv), we get

$$\tau = m(g - a)R = \frac{mRa}{2}$$

$$\Rightarrow$$
 g - a = $\frac{a}{2}$

$$\Rightarrow$$
 $a = \frac{2}{3} g$

99 (c)

The moment of inertia is maximum about axis 3, because rms distance of mass is maximum for this axis

100 (c)

Let same mass and same outer radii of solid sphere and hollow sphere are *M* and *R* respectively. The moment of inertia of solid sphere *A* about its diameter

$$I_A = \frac{2}{5}MR^2$$

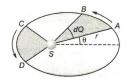
...(i)

Similarly, the moment of inertia of hollow sphere (spherical shell) *B* about its diameter

$$I_B = \frac{2}{3}MR^2$$

...(ii)

It is clear from Eqs. (i) and (ii), we get


$$I_A < I_B$$

101 (a)

$$v = \sqrt{\frac{2gh}{1 + \frac{K^2}{R^2}}} = \sqrt{\frac{2gh}{1 + \frac{2}{5}}} = \sqrt{\frac{10}{7}gh}$$

102 (c)

From Kepler's second law of motion, a line joining any planet to the sun sweeps out equal areas in equal intervals of time. Let any instant t, the planet is in position A. Then area swept out by SA is

dA = area of the curved triangle SAB

$$= \frac{1}{2}(AB \times SA) = \frac{1}{2}(rd\theta \times r) = \frac{1}{2}r^2d\theta$$

The instantaneous areal speed is

$$\frac{dA}{dt} = \frac{1}{2}r^2 \frac{d\theta}{dt} = \frac{1}{2}r^2 \omega$$

Let *I* be angular momentum, *I* the moment of inertia and m the mass, then

$$J = I\omega = mr^2\omega$$

$$\therefore \frac{dA}{dt} = \frac{J}{2m} = \text{constant}$$

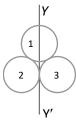
Hence, angular momentum of the planet is conserved.

$$\mathbf{c} = \frac{d\mathbf{L}}{dt} = \frac{L_2 - L_1}{\Delta t} = \frac{4A_0 - A_0}{4} = \frac{3A_0}{4}$$

104 **(b)**

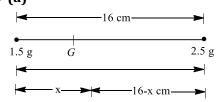
From conservation law of momentum

$$\frac{v_1}{v_2} = \frac{2}{1} = \frac{m_2}{m_1} = \frac{\frac{4}{3}\pi r_2^3 \rho}{\frac{4}{3}\pi r_1^3 \rho} = \left(\frac{r_2}{r_1}\right)^3$$


$$\Rightarrow \frac{r_2}{r_1} = (2)^{1/3} : 1$$

Or
$$r_1$$
: $r_2 = 1$: $(2)^{1/3}$

105 (d)


Moment of inertia of system about YY'

$$\begin{split} I &= I_1 + I_2 + I_3 \\ &= \frac{1}{2}MR^2 + \frac{3}{2}MR^2 + \frac{3}{2}MR^2 \\ &= \frac{7}{2}MR^2 \end{split}$$

106 (a)

or

Taking the moment of forces about centre of gravity G is

$$(1.5)gx = 2.5g(16 - x)$$

$$\Rightarrow 3x = 80 - 5x$$
or $8x = 80$ or $x = 10$ cm
$$107 (a)$$

The velocity of a body in different reference frames may be same or different. So, momentum and kinetic energy of a body may be same or different in different reference frames

108 (d)

As is clear from figure,

On reaching the bottom of the bowl, loss in PE=mgR, and

Gain in KE =
$$\frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$

= $\frac{1}{2}mv^2 + \frac{1}{2} \times (\frac{2}{5}mr^2)\omega^2$
= $\frac{1}{2}mv^2 + \frac{1}{5}mv^2 = \frac{7}{10}mv^2$

As again in KE = loss in PE

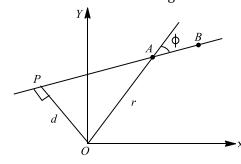
$$\therefore \frac{7}{10} mv^2 = mgR$$

$$v = \sqrt{\frac{10gR}{7}}$$

109 (d)

Angle turned by the body

Angular velocity
$$\omega = \frac{d\theta}{dt}$$


$$= \frac{d}{dt}(\theta_0 + \theta_1 t + \theta_2 t)$$

$$= \theta_1 + 2\theta_2 t$$

Angular acceleration $\alpha = \frac{d\omega}{dt}$ $= \frac{\frac{d}{dt}}{dt}(\theta_1 + 2\theta_2 t)$

110 **(b)**

From the definition of angular momentum,

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = rmv \sin \emptyset(-\hat{\mathbf{k}})$$

Therefore, the magnitude of *L* is

$$L = mvr \sin \emptyset = mvd$$

where $d = r \sin \emptyset$ is the distance of closest approach of the particle to the origin. As d is same for both the particles, hence $L_A = L_B$.

111 **(c)**

Conservation of angular momentum

$$I_1\omega_1 + I_2\omega_2 = (I_1 + I_2)\omega$$

Angular velocity of system $\omega = \frac{I_1\omega_1 + I_2\omega_2}{I_1 + I_2}$

 \div Rotational kinetic energy = $\frac{1}{2}(I_1+I_2)\omega^2$

$$= \frac{1}{2} (I_1 + I_2) \left(\frac{I_1 \omega_1 + I_2 \omega_2}{I_1 + I_2} \right) = \frac{(I_1 \omega_1 + I_2 \omega_2)^2}{2(I_1 + I_2)}$$

112 (a)

For the calculation of the position of centre of mass, cut off mass is taken as negative. The mass of disc is

$$m_1 = \pi r_1^2 \sigma$$

$$= \pi(6)^2 \sigma = 36\pi\sigma$$

Where σ is surface mass density

The mass of cutting portion is

$$m_2 = \pi (1)^2 \sigma = \pi \sigma$$
 $x_{\text{CM}} = \frac{m_1 x_1 - m_2 x_2}{m_1 - m_2}$

Taking origin at the centre of disc,

$$x_1 = 0, x_2 = 3 \text{ cm}$$
 $x_{\text{CM}} = \frac{36\pi\sigma \times 0 - \pi\sigma \times 3}{36\pi\sigma - \pi\sigma} = \frac{-3\pi\sigma}{35\pi\sigma} = -\frac{3}{35} \text{ cm}$

113 **(b)**

$$\vec{r}_{cm} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}$$

$$= \frac{1(\hat{\imath} + 2\hat{\jmath} + \hat{k}) + 3(-3\hat{\imath} - 2\hat{\jmath} + \hat{k})}{1 + 3}$$

$$\Rightarrow \vec{r}_{cm} = -2\hat{\imath} - \hat{\jmath} + \hat{k}$$

114 (c

When hollow cylinder slides with out rolling, it possess only translational kinetic energy, $K_{\tau}=\frac{1}{2}mv^2$

When it rolls without slipping, it possess both types of kinetic energy,

$$\begin{split} K_N &= \frac{1}{2} m v^2 \left(1 + \frac{K^2}{R^2} \right) \\ &\therefore \frac{\kappa_T}{\kappa_N} = \frac{1}{\left(1 + \frac{\kappa^2}{R^2} \right)} = \frac{1}{2} \quad [\text{For hollow cylinder } \frac{\kappa^2}{R^2} = 1] \end{split}$$

115 **(b)**

NEWTON'S APPLE

Angular of the body is given by

$$L = I\omega$$
or
$$L = I \times \frac{2\pi}{T} \text{ or } L \propto \frac{1}{T}$$

$$\Rightarrow \frac{L_1}{L_2} = \frac{T_2}{T_1}$$

$$\frac{L}{L_2} = \frac{2T}{T}$$

$$(As, T_2 = 2T)$$
So,
$$L_2 = \frac{L}{2}$$

Thus, on doubling the time period, angular momentum of body becomes half.

Gravitation

RED ZONE

Radius of orbit of satellite of earth is R. Its kinetic energy is proportional to

	a) $\frac{1}{R}$ b) $\frac{1}{\sqrt{R}}$	Ē .	c) R	d) $\frac{1}{R^{3/2}}$
2.	A satellite is to revolve round th	e earth in a cir <mark>cle</mark> o <mark>f r</mark> a	adius 8000 <i>km</i> . The speed	at which this satellite be
	projected into an orbit, will be			
	a) 3 <i>km/s</i> b) 16	km/s	c) 7.15 km/s	d) 8 <i>km/s</i>
3.	Time speed of revolution of a ne	arest satellit <mark>e around</mark>	a planet of radius R is T .	Period of revolution around
	another planet, whose radius is	3R but havin <mark>g same d</mark> e	<mark>ensity is</mark>	
	a) <i>T</i> b) 3 <i>T</i>		c) 9 <i>T</i>	d) $3\sqrt{3}T$
4.	Two identical thin rings each of	radius R are coaxially	placed at a distance R. If t	the rings have a uniform
	mass distribution and each has			
	from centre of one ring to that o	f the other is		
	$ \begin{array}{c c} R \\ \downarrow \\ Y \end{array} $ $ \begin{array}{c c} R \\ \downarrow \\ Y \end{array} $	NEWTON'S A	PPLE	
	a) $\frac{Gmm_1(\sqrt{2}+1)}{2}$			

b) $\frac{m_2 R}{m_2 R}$

c)
$$\frac{Gm\sqrt{2}(m_1+m_2)}{R}$$

d) Zero

1.

5. Kepler's second law regarding constancy of aerial velocity of a planet is consequence of the law of conservation of

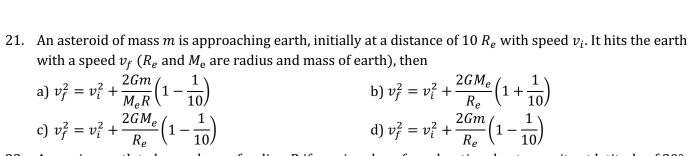
a) Energy

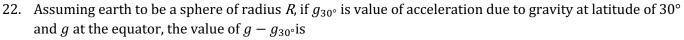
b) Angular momentum

c) Linear momentum

d) None of these

6. The acceleration of a body due to the attraction of the earth (radius R) at a distance 2R from the surface of the earth is (g = acceleration due to gravity at the surface of the earth)


a) $\frac{g}{9}$


b) $\frac{g}{3}$

c) $\frac{g}{4}$

d) *g*

7.	A satellite of mass m is plate the satellite is	aced at a distance r from th	the centre of earth (mass M).	. The mechanical energy of
	a) $-\frac{GMm}{r}$	b) $\frac{GMm}{r}$	c) $\frac{GMm}{a}$	d) $-\frac{GMm}{2m}$
8.	The escape velocity of a be	ody on the surface of the ea	arth is $11.2 km/s$. If the earth comes half, the escape velob) $11.2 km/s$ (remain unod) $44.8 km/s$	th's mass increases to city would become
9.	•	-	ght of 5 <i>R</i> above the surface ite in hours at a height of 2 <i>R</i>	
	a) 5	b) 10	c) 6√2	$d)\frac{6}{\sqrt{2}}$
10.	The escape velocity of a sp	where of mass m from earth	n having mass M and radius	R is given by
	a) $\sqrt{\frac{2GM}{R}}$	b) $2\sqrt{\frac{GM}{R}}$	c) $\sqrt{\frac{2GMm}{R}}$	d) $\sqrt{\frac{GM}{R}}$
11.	Gravitational potential on	the surface of earth is (M	= mass of the earth, $R = rac$	lius of earth)
	a) $-GM/2R$		c) gR	d) <i>GM/R</i>
12.	If orbital velocity of plane	t is given by $v = G^a M^b R^c$,	then	
	a) $a = 1/3, b = 1/3, c = -6$ c) $a = 1/2, b = -1/2, c = -1/2$	-1/3 : 1/2	b) $a = 1/2, b = 1/2, c = -4$ d) $a = 1/2, b = -1/2, c = -4$	-1/2 1/2
13.			a <mark>ses by 5</mark> 0%, the accelerati	
	a) Remain same	b) Decrease by 50%	c) Decrease by 100%	
14.			d diameter D_0 . A particle of	
	a) GM_0/D_0^2	b) $4mGM_0/D_0^2$	tion due to gravity which is	d) GmM_0/D_0^2
15	Kepler discovered	$\frac{1}{\sqrt{2}} \frac{4m_0/D_0}{\sqrt{2}}$	$\frac{C)}{A}\frac{4GM_0}{D_0}$	$u) G m m_0 / D_0$
13.	a) Laws of motion	1121110113	b) Laws of rotational moti	on
	c) Laws of planetary moti	on	d) Laws of curvilinear mo	
16.			ue to gravity at the surface	
	o n	ove the earth's surface res		
	_		-	$(h)^2$
	a) $\left(1+\frac{h}{R}\right)^2$	b) $\left(1 + \frac{R}{h}\right)^2$	c) $\left(\frac{R}{h}\right)$	d) $\left(\frac{h}{R}\right)^2$
17.	In planetary motion the ar	real velocity of position vec	ctor of a planet depends on	angular velocity (ω) and
	the distance of the planet	from sun (r) . If so the corr	ect relation for areal velocit	ty is
	a) $\frac{dA}{dt} \propto \omega r$	h) $\frac{dA}{dx} \propto \omega^2 r$	c) $\frac{dA}{dt} \propto \omega r^2$	d) $\frac{dA}{dr} \propto \sqrt{\omega r}$
4.0	ui	ut	dt	dt
18.	Earth binds the atmosphe	re because of	h)	J -4 l
	a) Gravity		b) oxygen between earth a	and atmosphere
19.	c) Both (a) and (b)	ide a thin enharical chall of	d) None of the above fradius R and mass M at a d	listance P/2 from the
17.	-		γ the shell on the point mass	•
	_	_	c) Zero	
	a) $\frac{GM}{2R^2}$	b) $-\frac{GM}{2R^2}$	0, 2010	d) $\frac{GM}{4R^2}$
20.	What is the height the weight Radius of earth is <i>R</i>	ight of body will be the sam	ne as at the same depth from	n the surface of the earth?
		1) <i>[</i> n	$\sqrt{5}R - R$	$\sqrt{3}R - R$
	a) $\frac{R}{2}$	b) $\sqrt{5}R - R$	c) $\frac{\sqrt{5R-R}}{2}$	$d)\frac{\sqrt{3}R-R}{2}$

a) $\frac{1}{4}\omega^2 R$ b) $\frac{3}{4}\omega^2 R$ c) $\omega^2 R$ d) $\frac{1}{2}\omega^2 R$

23. The weight of an object in the coal mine, sea level, at the top of the mountain are
$$W_1$$
, W_2 and W_3 respectively, then

a) $W_1 < W_2 > W_3$ b) $W_1 = W_2 = W_3$ c) $W_1 < W_2 < W_3$ d) $W_1 > W_2 > W_3$ 24. As we go from the equator to the poles, the value of g

a) Remains the same
 b) Decreases
 c) Increases
 d) Decreases upto a latitude of 45°

25. The escape velocity of a body from earth's surface is v_e . The escape velocity of the same body from a height equal to 7R from earth's surface will be

a) $\frac{v_e}{\sqrt{2}}$ b) $\frac{v_e}{2}$ c) $\frac{v_e}{2\sqrt{2}}$

26. The escape velocity from the earth is 11 kms⁻¹. The escape velocity from a planet having twice the radius and the same mean density as the earth would be

a) 5.5 kms⁻¹ b) 11 kms⁻¹ c) 15.5 kms⁻¹ d) 22 kms⁻¹

27. If density of earth increased 4 times and its radius become half of what it is, our weight will

a) Be four times its present value
b) Be doubled
c) Remain same
d) Be halved

28. A thin uniform annular disc (see figure) of mass M has outer radius 4R and inner radius 3R. The work

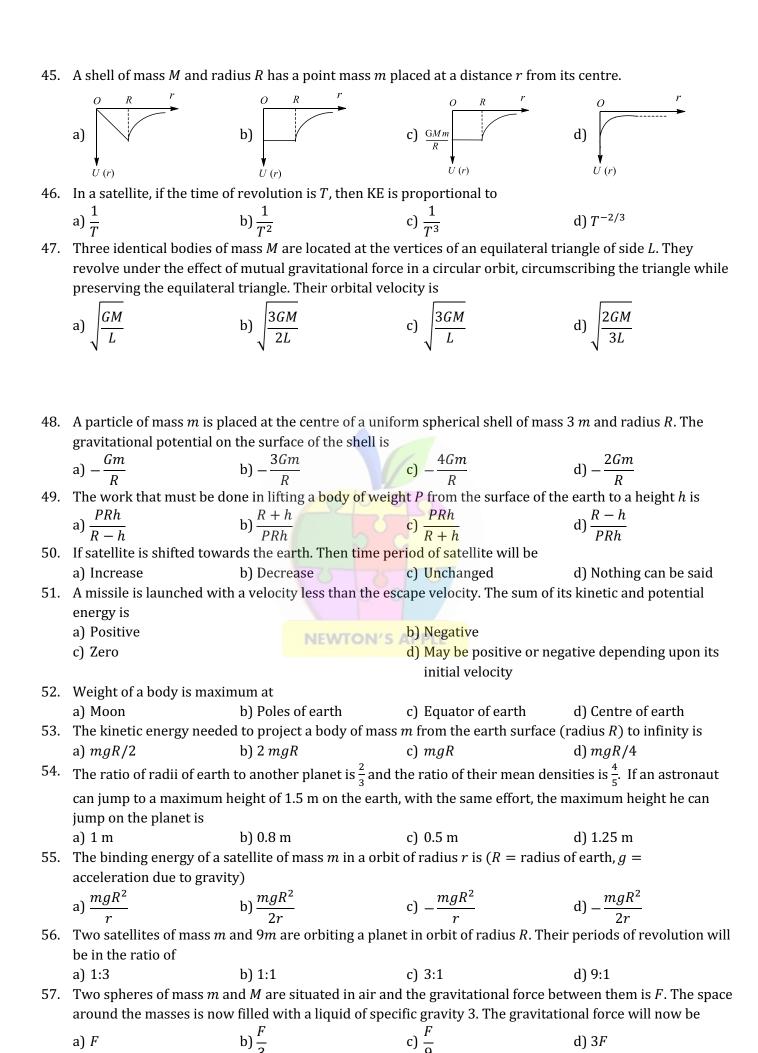
required to take a unit mass from point P on its axis to infinity is

a) $\frac{2GM}{7R}(4\sqrt{2}-5)$ b) $-\frac{2GM}{7R}(4\sqrt{2}-5)$ c) $\frac{GM}{4R}$ d) $\frac{2GM}{5R}(\sqrt{2}-1)$

29. If then radius of earth R, then the height h at which the value of g becomes one-fourth, will be

a) $\frac{R}{8}$ b) $\frac{3R}{8}$ c) $\frac{3R}{4}$ d) $\frac{R}{2}$

30. The escape velocity for a body projected vertically upwards from the surface of earth is 11 kms^{-1} . If the body is projected at an angle of 45° with the vertical, the escape velocity will be


a) $11\sqrt{2}$ kms⁻¹ b) 22 kms⁻¹ c) 11 kms⁻¹ d) $11/\sqrt{2}$ ms⁻¹

31. A rocket is launched with velocity $10 \ km/s$. If radius of earth is R, then maximum height attained by it will be

a) 2R b) 3R c) 4R d) 5R 32. The acceleration due to gravity is g at a point distant r from the centre of earth of radius R. If r < R, then

a) $g \propto r$ b) $g \propto r^2$ c) $g \propto r^{-1}$ d) $g \propto r^{-2}$

33.	In the following four peri	ods			
	(i) Time of revolution of a satellite just above the earth's surface (T_{st})				
	(ii) Period of oscillation of mass inside the tunnel bored along the diameter of the earth (T_{ma})				
	(iii) Period of simple pen-	dulum having a length equ	ual to the earth's radius in a	uniform field of	
	$9.8N/kg(T_{sp})$				
	(iv) Period of an infinite l	ength simple pendulum in	n the earth's real gravitation	al filed (T_{is})	
	a) $T_{st} > T_{ma}$		b) $T_{ma} > T_{st}$		
	c) $T_{sp} > T_{is}$		d) $T_{st} = T_{ma} = T_{sp} = T_{is}$		
34.	If the mass of earth is 80	times of that of a planet an	nd diameter is double that o	f planet and $'g'$ on earth is	
	$9.8m/s^2$, then the value of	of $'g'$ on that planet is			
	a) $4.9 m/s^2$	b) $0.98 m/s^2$	c) $0.49 m/s^2$	d) $49 m/s^2$	
35.	An iron ball and a woode	n ball of the same radius a	re released from a height 'h	' in vacuum. The time taken	
	by both of them to reach	the ground is			
	a) Unequal	b) Exactly equal	c) Roughly equal	d) Zero	
36.	A geostationary satellite i	s orbiting the earth at a he	eight of 6 <i>R</i> above the surfac	e of the earth; R being the	
	radius of the earth. What	will be the time period of	another satellite at a height	2.5 <i>R</i> from the surface of	
	the earth?				
	a) $6\sqrt{2}$ h	b) $6\sqrt{2.5}$ h	c) $6\sqrt{3}$ h	d) 12 h	
37.	If the radius of the earth s	shrinks by 1%, its mass re	maining same, the accelerat	tion due to gravity on the	
	surface of earth will				
	a) Decrease by 2%	b) Decrease by 0.5%	c) Increase by 2%	d) Increase by 0.5%	
38.			placed in contact with each	other. The gravitational	
	attraction between them	-			
	a) R^2	b) R ⁻²	c) <i>R</i> ⁴	d) R^{-4}	
39.	Gravitational field is				
		-	c) Electromagnetic		
40. A satellite is revolving round the earth in an orbit of radius r with time period				-	
		,	with time period $T + \Delta T$	•	
	a) $\frac{\Delta T}{T} = \frac{3}{2} \frac{\Delta r}{r}$	b) $\frac{\Delta T}{T} = \frac{2}{3} \frac{\Delta r}{r}$	c) $\frac{\Delta I}{T} = \frac{\Delta I}{T}$	d) $\frac{\Delta T}{T} = -\frac{\Delta r}{r}$	
41.	1 4 1	1 57	1 /	mes the acceleration due to	
11.					
	gravity on the surface of the earth. If R_e is the maximum range of a projectile on the earth's surface, what is the maximum range on the surface of the moon for the same velocity of projection				
	a) 0.2 R _e	b) 2 <i>R_e</i>	c) $0.5 R_e$	d) 5 <i>R_e</i>	
42.	_	•	f the radius of earth contrac	* *	
	keeping the mass of the earth constant, the escape velocity will be				
	a) Doubled	b) Halved	c) Tripled	d) Unaltered	
43.	A body is released from a	point distance r from the	centre of earth. If <i>R</i> is the e	arth and $r > R$, then the	
	velocity of the body at the	e time of striking the earth	will be		
			$\sqrt{2 a D}$	2 a D(a D)	
	a) \sqrt{gR}	b) $\sqrt{2gR}$	c) $\sqrt{\frac{2gR}{r-R}}$	d) $\sqrt{\frac{2gR(r-R)}{r}}$	
			V	\sqrt{r}	
44.	A satellite revolves aroun	-	orbit. Its speed		
	a) Is the same at all point				
	b) Is greatest when it is c				
	c) Is greatest when it is farthest from the earthd) Goes on increasing or decreasing continuously depending upon the mass of the satellite				
	u) Goes on increasing or o	decreasing continuously d	epending upon the mass of	the satellite	

58.	For a body to escape from	earth, angle at which it sh	ould be fired is?		
	a) 45°	b) > 45°	c) < 45°	d) any angle	
59.	If an object of mass m is to	aken from the surface of ea			
	a) 2mgR	b) <i>mgR</i>	c) $\frac{2}{3}mgR$	d) $\frac{3}{2}mgR$	
60.	Two bodies of masses m_1	and m_2 are initially at rest	at infinite distance apart.	Γhey are then allowed to	
	move towards each other	under mutual gravitationa	l attraction. Their relative	velocity of approach at a	
	separation distance r between				
	a) $\left[2G \frac{(m_1 - m_2)}{r} \right]^{1/2}$	b) $\left[\frac{2G}{r}(m_1 + m_2)\right]^{1/2}$	c) $\left[\frac{r}{2G(m_1m_2)}\right]^{1/2}$	$\mathrm{d}\left[\frac{2G}{r}m_1m_2\right]^{1/2}$	
61.	In the solar system, which	is conserved			
	a) Total Energy	b) K.E.	c) Angular Velocity	d) Linear Momentum	
62.	The total energy of a circu	•			
	a) Twice the kinetic energ	**	b) Half the kinetic energy		
	c) Twice the potential end		d) Half the potential ener	gy of the satellite	
63.		le pendulum on a freely mo		D. I. C	
<i>C</i> 1	a) Zero	b) 2 sec	c) 3 sec	d) Infinite	
64.				n varies with $R^{-5/2}$, where R	
	a) R^3	te. The square of the time p b) $R^{7/2}$	c) $R^{3/2}$	d) R ^{5/7}	
65.	,			,	
05.					
	D				
	$A \longrightarrow C$				
	B				
	a) <i>D</i>	b) B NEWTON'S	c) A	d) <i>C</i>	
66.		the surfa <mark>ce of earth, the he</mark> i	<mark>ight above t</mark> he surface of th	e earth of radius R, where	
	the weight is 30 kg is				
	a) 0.73 R	b) $R/\sqrt{3}$	c) R/3	d) $\sqrt{3}R$	
67.	•	a point where the gravitati	_		
	a) The gravitational field		b) The gravitational field is not necessarily zero		
	c) Nothing can be said definitely about the d) None of these				
60	gravitational field	11 1 0 .1 0		1 1 1	
68.	· · ·	• •	-	with a velocity equal to half	
	• •	at planet. The maximum he b) $R/2$	ight attained by the body is $c) R/4$	s d) <i>R</i> /5	
69.	a) R/3	ss M, are located at the ver	, ,	, ,	
09.	potential due to this at the		uces of a square with side i	L. The gravitational	
	_		c) Zero	GM	
	a) $-\sqrt{32}\frac{GM}{L}$	b) $-\sqrt{64}\frac{GM}{L^2}$	c) 2010	d) $\sqrt{32} \frac{GM}{L}$	
70.	A point mass m is placed in	inside a spherical shell of ra	adius R and mass M. at a di	stance $R/2$ from the centre	
	of the shell. The gravitation	onal force exerted by the sh	ell on the point mass is		
	a) $\frac{GMm}{R^2}$	b) $-\frac{GMm}{R^2}$	c) Zero	d) $4\frac{GMm}{R^2}$	
	R^2	R^2		R^2	

	from the centre of earth to which it can go, will be: $(R = \text{radius of earth})$				
	a) $\frac{R}{k^2 + 1}$	b) $\frac{R}{k^2 - 1}$	c) $\frac{R}{1-k^2}$	d) $\frac{R}{k+1}$	
72	7V 1 ±	$R^2 - 1$ ne sun. At a given point P , it	1 h	$\kappa + 1$	
/ 4.		it Q , when it is farthest from			
	•			_	
	a) $\frac{d_1^2 v_1}{d_2^2}$	b) $\frac{d_2 v_1}{d_1}$	c) $\frac{d_1 v_1}{d_2}$	d) $\frac{d_2^2 v_1}{d_2^2}$	
72	42	1	2	α_1	
/3.				is the radius of earth. If g is	
	_	ravity at the surface of earth			
71	a) $(4/5)mgh$	b) (5/6)mgh ficial does not depend upor	c) (6/7)mgh	d) mgh	
/4.	a) Mass of the earth	nciai does not depend upor	b) Mass of the satellite		
	c) Radius of the earth		d) Acceleration due to gra	avity	
75		on the earth's surface the r	,	at of the earth's mass and its	
73.		earth's radius. On the moon		at of the cartif 5 mass and its	
	a) 45 kg	b) 202.5 kg	c) 90 kg	d) 40 kg	
76		ound the earth with a kinet	, ,	, 0	
, 0.	needed to make it escape		are energy 21 the millimum	dudicion of inflocic chorgy	
	a) 2 <i>E</i>	b) \sqrt{E}	c) E/2	d) <i>E</i>	
77.		7 12	, ,	ving density same as that of	
	_	on the surface of the earth		-	
	a) 60 m	b) 80 m	c) 100 m	d) 120 m	
7 0			4		
78.		and <i>B</i> are circulating round	The state of the s	R and 2R respectively.	
		earth). The ratio of kinetic		3	
	a) $\frac{1}{2}$	b) $\frac{2}{3}$	C) 2	d) $\frac{3}{2}$	
79.	L	ng on a s <mark>atellite orbiting ro</mark>	ound the earth and the gray	ritational force of earth	
	-	th equal F . The net force on			
	a) Zero	b) <i>F</i>	c) $F\sqrt{2}$	d) 2 <i>F</i>	
80.	Two bodies of masses <i>m</i>	and 4m are placed at a dist	, .	,	
		he gravitational field is zer	-	1	
	a) $-\frac{4Gm}{r}$	b) $-\frac{6Gm}{r}$	c) $-\frac{9Gm}{m}$	d) zero	
	$r = \frac{r}{r}$	$r = \frac{r}{r}$	$\frac{c_1}{r}$		

71. A projectile is projected with velocity kv_e in vertically upward direction from the ground into the space. (v_e is escape velocity and k < 1). If resistance is considered to be negligible then the maximum height

: HINTS AND SOLUTIONS :

$$K.E. = \frac{GMm}{2R}$$

2

$$v_0 = \sqrt{\frac{GM}{r}} = \sqrt{\frac{gR^2}{r}} = \sqrt{\frac{10 \times (64 \times 10^5)^2}{8000 \times 10^3}}$$
$$= 71.5 \times 10^2 m/s = 7.15 \ km/s$$

3 (a)

Time period of satellite which is very near to

$$T = 2\pi \sqrt{\frac{R^3}{GM}} = 2\pi \sqrt{\frac{R^3}{G\frac{4}{3}\pi R^3 \rho}} :: T \propto \sqrt{\frac{1}{\rho}}$$

i.e. time period of nearest satellite does not depends upon the radius of planet, it only depends upon the density of the planet. In the problem, density is same so time period will be same

4 (b)

> $V_A = ($ Potential at A due to A) + (Potential at Adue to *B*)

$$\Rightarrow V_A = -\frac{Gm_1}{R} - \frac{Gm_2}{\sqrt{2}R}$$

 $V_B = (Potential at B due to A) + (Potential at B)$ due to B)

$$\Rightarrow V_B = -\frac{Gm_2}{R} - \frac{Gm_1}{\sqrt{2}R}$$
Since, $W_{A\to B} = m(V_B - V_A) \Rightarrow W_{A\to B}$

$$= \frac{Gm(m_1 - m_2)(\sqrt{2} - 1)}{\sqrt{2}R}$$

$$\frac{dA}{dt} = \frac{L}{2m} = \text{constant}$$

$$g' = g \left(\frac{R}{R+h}\right)^2 = g \left(\frac{R}{R+2R}\right)^2 = \frac{g}{9}$$

7 (d)

8

$$v_e = \sqrt{\frac{2GM}{R}} : v_e \propto \sqrt{\frac{M}{R}}$$

If *M* becomes double and *R* becomes half then escape velocity becomes two times

$$\frac{T_1^2}{T_2^2} = \frac{R_1^3}{R_2^3} = \frac{(6R)^3}{(3R)^3} = 8$$

$$\frac{24 \times 24}{T_2^2} = 8$$

$$T_2^2 = \frac{24 \times 24}{8}$$

$$T_2^2 = 72$$

$$T_2^2 = 72$$

 $T_2^2 = 36 \times 2$

$$T_2 = 6\sqrt{2}$$

10 (a)

Escape velocity does not depend on the mass of the projectiles

11

Gravitational potential at a point on the surface of

$$V = \frac{-GM}{R} = \frac{-gR^2}{R} = -gR$$

12 (b)

$$v = \sqrt{\frac{GM}{R}} = G^{1/2}M^{1/2}R^{-1/2}$$

13

Here,
$$g = GM/R$$
 and $g' = \frac{G(M/2)}{(R/2)^2} = \frac{2GM}{R^2} = 2g$
 \therefore % increase in $g = \left(\frac{g'-g}{g}\right) \times 100$
 $= \left(\frac{2g-g}{g}\right) \times 100 = 100\%$

$$g = \frac{GM}{R^2} = \frac{GM_0}{(D_0/2)^2} = \frac{4GM_0}{D_0^2}$$

15

16 (a)

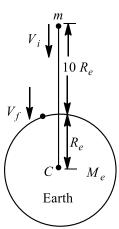
> The value of acceleration due to gravity g at height h above the surface of earth is

$$g_h = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

Where R is radius of earth.

$$\therefore \frac{g}{q_h} = \left(1 + \frac{h}{R}\right)^2$$

17 **(c)**


$$\frac{dA}{dt} = \frac{L}{2m} \Rightarrow \frac{dA}{dt} \propto vr \propto \omega r^2$$

18

Earth is surrounded by an atmosphere of gases (air). The reason is that in earth's atmosphere the average thermal velocity of even the highest molecules at the maximum possible temperature is small compared to escape velocity which in turn depends upon gravity ($v_e = \sqrt{gR_e}$).

Therefore, the molecules of gases cannot escape from the earth. Hence, an atmosphere exists around the earth.

- 19 **(c)**Gravitational field inside hollow sphere will be zero
- 20 (c) $\frac{gR^2}{(R+h)^2} = g\left(1 \frac{h}{R}\right)$ or $\left(1 \frac{h}{R}\right)\left(1 + \frac{h^2}{R^2} + \frac{2h}{R}\right) = 1$ or $\frac{h^3}{R^3} + \frac{h^2}{R^2} \frac{h}{R} = 0$ or $\frac{h}{R}\left(\frac{h^2}{R^2} + \frac{h}{R} 1\right) = 0$ or $\frac{h}{R} = \frac{-1 \pm \sqrt{1+4}}{2} = \frac{\sqrt{5}-1}{2}$ or $h = \frac{\sqrt{5}R R}{2}$
- 21 **(c)**Applying law of conservation of energy for asteroid at a distance $10 R_e$ and at earth's surface.

Now,
$$K_f = \frac{1}{2}mv_i^2 \text{ and } U_i = -\frac{GM_em}{10R_e}$$
$$K_f = \frac{1}{2}mv_f^2 \text{ and } U_f = -\frac{GM_em}{R_c}$$

Substituting these values in Eq. (i), we get

$$\frac{1}{2}mv_{i}^{2} - \frac{GM_{e}m}{10R_{e}} = \frac{1}{2}mv_{f}^{2} - \frac{GM_{e}m}{R_{e}}$$

$$\Rightarrow \frac{1}{2}mv_{f}^{2} = \frac{1}{2}mv_{f}^{2} + \frac{GM_{e}m}{R_{e}} - \frac{GM_{e}m}{10R_{e}}$$

$$\Rightarrow v_{f}^{2} = v_{i}^{2} + \frac{2GM_{e}}{R_{e}} - \frac{2GM_{e}}{10R_{e}}$$

$$\therefore v_f^2 = v_i^2 + \frac{GM_em}{R_e} \left(1 - \frac{1}{10} \right)$$

22 **(b)**

The value of acceleration due to gravity at latitude $\boldsymbol{\lambda}$ is given by

$$g_{\lambda} = g - R\omega^{2}\cos^{2}\lambda$$

$$\therefore g - g_{\lambda} = R\omega^{2}\cos^{2}\lambda$$
At $\lambda = 30^{\circ}$,
$$g - g_{30^{\circ}} = R\omega^{2}\cos^{2}30^{\circ}$$

$$= R\omega^{2}\left(\frac{\sqrt{3}}{2}\right)^{2}$$

$$= \frac{3}{4}R\omega^{2}$$

23 **(a)**

Because value of g decreases when we move either in coal mine or at the top of mountain

- 24 **(c)**
- 25 **(c)** $v_e \propto \frac{1}{\sqrt{r}}$ where r is a position of body from the surface

$$\frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \sqrt{\frac{R + 7R}{R}} \Rightarrow v_2 = \frac{v_1}{2\sqrt{2}}$$

26 **(d)**

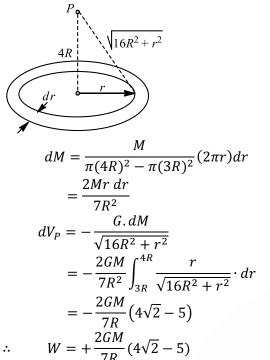
Escape velocity $v_e = \sqrt{\frac{2GM}{R}}$

$$\frac{2G \frac{4}{3}\pi R^3 \times d}{R}$$

$$\sqrt{2G \frac{4}{3}\pi R^3 \times d} = R \sqrt{\frac{8}{3}\pi G d}$$

where d = mean density of earth

$$v_e \propto R\sqrt{d}$$


$$\frac{v_e}{v_p} = \frac{R_e}{R_p} \sqrt{\frac{d_e}{d_p}}$$

$$= \frac{R_e}{2R_e} \sqrt{\frac{d_e}{d_e}}$$

$$= v_p = 2v_e$$

- $= 2 \times 11 = 22 \text{kms}^{-1}$ 27 **(b)**
- $g \propto \rho R$ 28 **(a)** $W = \Delta U = U_f U_i = U_\infty U_P$ $= -U_P = -mV_P$ $= -V_P (as m = 1)$

Potential at point P will be obtained by in integration as given below. Let dM be the mass of small rings as shown

29 **(b)**

The value of acceleration due to gravity at height *h* above the surface of the earth is given by

Given,
$$g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

$$g' = g\left(1 + \frac{h}{R}\right)^{-2} = g\left(1 - \frac{2h}{R}\right)$$

$$g' = \frac{g}{4}$$

$$g' = a\left(1 - \frac{2h}{R}\right)$$

$$\frac{g}{4} = g\left(1 - \frac{2h}{R}\right)$$

$$\Rightarrow \qquad \frac{1}{4} = 1 - \frac{2h}{R}$$

$$\Rightarrow \qquad \frac{2h}{R} = \frac{3}{4}$$

$$\Rightarrow \qquad h = \frac{3R}{8}$$

30 **(c)**

The escape velocity is independent of angle of projection, hence, it will remain same $ie. 11 \text{ kms}^{-1}$.

31 **(c)**

If the body is projected with velocity $v(v < v_e)$ then height up to where it rises,

$$h = \frac{R}{\frac{v_e^2}{v^2} - 1}$$

$$\Rightarrow h = \frac{R}{\left(\frac{11.2}{10}\right)^2 - 1} = 4R \text{ (approx.)}$$

32 **(a)**

Inside the earth $g' = \frac{4}{3}\pi\rho Gr : g' \propto r$

33 (c

(i)
$$T_{st} = 2\pi \sqrt{\frac{(R+h)^3}{GM}} = 2\pi \sqrt{\frac{R}{g}}$$
 [As $h << R$ and $GM = gR^2$]

(ii)
$$T_{ma} = 2\pi \sqrt{\frac{R}{g}}$$

(iii)
$$T_{sp} = 2\pi \sqrt{\frac{1}{g(\frac{1}{l} + \frac{1}{R})}} = 2\pi \sqrt{\frac{R}{2g}}$$
 [As $l = R$]

(iv)
$$T_{is} = 2\pi \sqrt{\frac{R}{g}}$$
 [As $l = \infty$]

34 (c)

$$g_p = g_e \left(\frac{M_p}{M_e}\right) \left(\frac{R_e}{R_p}\right)^2 = 9.8 \left(\frac{1}{80}\right) (2)^2$$
$$= 9.8/20 = 0.49 m/s^2$$

35 **(b)**

Time of decent $t = \sqrt{\frac{2h}{g}}$. In vacuum no other force works except gravity so time period will be exactly equal

36 (a)

According to Kepler's law of periods

$$T^2 \propto a^3[a = \text{semi-major axis}]$$

Here, in case I a is 7R as satellite is 6R above the earth and for a geostationary satellite T = 24 h

:
$$(24)^2 \propto (7R)^3$$
 (i)

Similarly for case II

$$T^2 \propto (3.5R)^3$$
 (ii)

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{(24)}{T^2} = \frac{(7R)}{(3.5R)^3}$$

$$\Rightarrow \qquad T^2 = \frac{(24)^2}{8}$$

or
$$T = 6\sqrt{2} \text{ h}$$

37 **(c)** $g = \frac{GM}{r^2}$

∴ $\log g = \log G + \log M - 2 \log r$ Differentiating both sides w.r.t. t

$$\frac{1}{g} = \frac{dg}{dt} = 0 - 2 \times \frac{1}{r} \frac{dr}{dt} \left(\frac{dr}{dt} \times 100 = -1 \right)$$

$$\Rightarrow \frac{1}{g} \left(\frac{dg}{dt} \times 100 \right) = -2 \times \frac{1}{r} \left(\frac{dr}{dt} \times 100 \right)$$
$$\Rightarrow \frac{dg}{dt} \times 100 = -2 \times (-1) = 2$$

∴ g increasing by 2%

38 (c)

$$F = \frac{G \times m \times m}{(2R)^2} = \frac{G \times \left(\frac{4}{3}\pi R^3 \rho\right)^2}{4R^2} = \frac{4}{3}\pi^2 \rho^2 R^4$$

$$F = \frac{G \times m \times m}{(2R)^2} = \frac{4}{3}\pi^2 \rho^2 R^4$$

39 (a)

40 (a)

Since,
$$T^2 = kr^3$$

$$\Rightarrow \frac{2\Delta T}{T} = \frac{3\Delta r}{r} \Rightarrow \frac{\Delta T}{T} = \frac{3\Delta r}{r}$$

41 (d)

Range of projectile $R = \frac{u^2 \sin 2\theta}{a}$

If u and θ are constant then $R \propto \frac{1}{a}$

$$\frac{R_m}{R_e} = \frac{g_e}{g_m} \Rightarrow \frac{R_m}{R_e} = \frac{1}{0.2} \Rightarrow R_m = \frac{R_e}{0.2} \Rightarrow R_m = 5R_e$$

42

Escape velocity
$$v_e = \sqrt{\frac{2GM}{R}}$$

If
$$R' = \frac{R}{4}$$

$$v'_e = 2\sqrt{\frac{2GM}{R}}$$

Since, *G* and *M* are constant hence,

$$v'_{\rho} = 2v_{\rho}$$

43 (d)

Using law of conservation of energy

$$-\frac{GMm}{r} = \frac{1}{2}mv^2 - \frac{GMm}{R}$$
$$\frac{v^2}{2} = \frac{GM}{R} - \frac{GM}{r}$$
$$= GM\left(\frac{r-R}{rR}\right) = gR\left(\frac{r-R}{r}\right)$$
$$v = \sqrt{2gR(r-R)/r}$$

44 (b)

45

$$U_{(r)} = \begin{cases} -\frac{GMm}{r}, r \ge R \\ -\frac{GMm}{R}, r < R \end{cases}$$

(d) 46

Velocity of satellite
$$v = \sqrt{\frac{GM}{r}}$$

$$\mathrm{KE} \propto v^2 \propto \frac{1}{r}$$
 and
$$T^2 \propto r^3$$

$$\mathrm{KE} \propto T^{-2/3}$$

48

Gravitational potential on the surface of the shell

V = Gravitational potential due to particle (V₁)+ Gravitational potential due to shell particle (V_2) $=-\frac{Gm}{R}+\left(-\frac{G3m}{R}\right)=-\frac{4Gm}{R}$

49 (c)

Force on the body = $\frac{GMm}{r^2}$

To move it by a small distance dx,

Work done = $F dx = \frac{GMm}{x^2} dx$

Total work done = $GMm \int_{R}^{R+h} \frac{dx}{r^2} = \left[\frac{-GMm}{r}\right]_{R}^{R+h}$

$$= \frac{GMm}{R} \left[\frac{1}{R} - \frac{1}{R+h} \right]$$

$$= \left[\frac{(R+h) - R}{R(R+h)} \right] = \frac{GMmh}{R(R+h)}$$

$$\frac{GM}{R^3} \times \frac{mhR}{R+h} = \frac{gmhR}{R+h} = \frac{PRh}{R+h}$$

50 **(b)** $T^2 \propto r^3$

51 **(b)**

If missile is launched with escape velocity, then it will escape from the gravitational field and at infinity its total energy becomes zero But if the velocity of projection is less than escape velocity then sum of energies will be negative. This shows that attractive force is working on the missile

52 (b)

53 **(c)** $\frac{1}{2}mv_e^2 = \frac{1}{2}m \ 2gR = mgR$ 54

Given
$$\frac{R_e}{R_p} = \frac{2}{3}$$

$$\frac{d_e}{d_p} = \frac{4}{5}$$
As
$$MG = gR_e^2$$
and
$$M = d_e \times \frac{4}{3}\pi R_e^3$$

$$d_e \times \frac{4}{3}\pi R_e^3 \times G = g_e R_e^2$$
or
$$d_e \times \frac{4}{3}\pi R_e \times G = g_e \qquad \dots (i)$$

Similarly for planet

$$d_p \times \frac{4}{3}\pi R_p G = g_p \qquad \dots \text{ (ii)}$$

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{g_e}{g_p} = \frac{R_e}{R_p} \times \frac{d_e}{d_p}$$
$$\frac{g_e}{g_p} = \frac{2}{3} \times \frac{4}{5} = \frac{8}{15} = 0.5$$

55 **(b)**

The energy required to remove the satellite from its orbit around the earth to infinity is called binding energy of the satellite. It is equal to negative of total mechanical energy of satellite in its orbit.

Thus, binding energy
$$= -E = \frac{GMm}{2r}$$

but, $g = \frac{GM}{R^2}$
 $\Rightarrow GM = gR^2$
 $\therefore BE = \frac{gmR^2}{2r}$

56 **(b)**

Time period is independent of mass. Therefore their periods of revolution will be same.

57 **(a)**Gravitational force dsesnot depend on the medium.

58 **(d)**

The body can be fired at any angle because the energy is sufficient to take the body out of the gravitational field of earth

59 **(c)** Work done

$$W = \Delta U = \frac{mgh}{1 + \frac{-h}{R}}$$

Substituting
$$R = \frac{h}{L}$$
 we get
$$\Delta U = \frac{mg \times 2R}{1+2}$$
$$\Delta U = \frac{2mgR}{3}$$

60 **(b)**

Let velocities of these masses at r distance from each other be v_1 and v_2 respectively By conservation of momentum

$$m_1 v_1 - m_2 v_2 = 0$$

$$\Rightarrow m_1 v_1 = m_2 v_2$$
 ...(i)

By conservation of energy

Change in P.E. = change in K.E.

$$\frac{Gm_1m_2}{r} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$$

$$\Rightarrow \frac{m_1^2v_1^2}{m_1} + \frac{m_2^2v_2^2}{m_2} = \frac{2Gm_1m_2}{r} \quad ...(ii)$$

On solving equation (i) and (ii)

$$v_1 = \sqrt{\frac{2Gm_2^2}{r(m_1 + m_2)}} \text{ and } v_2 = \sqrt{\frac{2Gm_1^2}{r(m_1 + m_2)}}$$

$$v_{app} = |v_1| + |v_2| = \sqrt{\frac{2G}{r}(m_1 + m_2)}$$

61 **(a)**

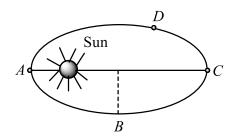
62 (d)

Kinetic energy of the satellite is $K = \frac{GMm}{2r}$...(i) Potential energy of the satellite is $U = -\frac{GMm}{r}$...(ii)

Total energy of the satellite is $E = -\frac{GMm}{2r}$...(iii) Divide (iii) by (i), we get $\frac{E}{K} = -1$ or E = -KDivide (iii) by (ii), we get $\frac{E}{U} = \frac{1}{2}$ or $E = \frac{U}{2}$

63 **(d)**

Time period of simple pendulum $T = 2\pi \sqrt{\frac{1}{g'}}$


In artificial satellite g' = 0 : T = infinite

64 **(b)**Gravitational force provides the required centripetal force *ie*,

 $m\omega^{2}R = \frac{GMm}{R^{\frac{5}{2}}}$ $\Rightarrow \frac{m4\pi^{2}}{T^{2}} = \frac{GMm}{R^{\frac{7}{2}}}$

65 **(c)**

From Kepler's second law of planetary motion, the linear speed of a planet is maximum, when its distance from the sun is least, *ie*, at point *A*.

Given,
$$\frac{mg'}{mg} = \frac{30}{90}$$
 or $\frac{g'}{g} = \frac{1}{3}$
Now, $g' = g \frac{R^2}{(R+h)^2}$ or $\frac{g'}{g} = \frac{R^2}{(R+h)^2} = \frac{1}{3}$
or $\frac{R}{R+h} = \frac{1}{\sqrt{3}}$ or $(R+h) = \sqrt{3}R$
or $h = (\sqrt{3}-1)R = 0.73R$

67 **(a)**

$$I = \frac{-dV}{dx}$$

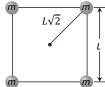
If V = 0 then gravitational field is necessarily zero

68 **(a**)

If body is projected with velocity $v(v < v_e)$ then Height up to which it will rise, $h = \frac{R}{\frac{V_e^2}{2} - 1}$

$$v = \frac{v_e}{2}$$
 (Given) $\therefore h = \frac{R}{\left(\frac{(v_e)}{v_e/2}\right)^2 - 1} = \frac{R}{4 - 1} = \frac{R}{3}$

69 **(a)**


Potential at the centre due to single mass = $\frac{-GM}{L/\sqrt{2}}$

Potential at the centre due to all four masses

$$= -4 \frac{GM}{L/\sqrt{2}} = -4\sqrt{2} \frac{GM}{L}$$

$$= -\sqrt{32} \times \frac{GM}{L}$$

$$\downarrow L\sqrt{2}$$

70 **(c)**

Gravitational field due to a spherical shell At a point inside the shell, i.e., r < R

$$E_{\rm inside} = 0$$

 \therefore The gravitational force acting on a point mass m at a distance R/2 is

$$F = mE_{\text{inside}} = 0$$

71 **(c)**

Kinetic energy = Potential energy

$$\frac{1}{2}m(kv_e)^2 = \frac{mgh}{1+\frac{h}{R}} \Rightarrow \frac{1}{2}mk^2 2gR = \frac{mgh}{1+\frac{h}{R}} \Rightarrow h$$
$$= \frac{Rk^2}{1-k^2}$$

Height of Projectile from the earth's surface = h

Height from the centre $r = R + h = R + \frac{Rk^2}{1-k^2}$ By solving $r = \frac{R}{1-k^2}$

72 **(c)**

Angular momentum remains constant

$$mv_1d_1=mv_2d_2\Rightarrow v_2=\frac{v_1d_1}{d_2}$$

73 **(b)**

Gravitational force on a body at a distance x from the centre of earth $F = \frac{GMm}{r^2}$

Work done,

$$W = \int_{R}^{R+h} F dx = \int_{R}^{R+h} \frac{GM m}{x^2} dx$$
$$= GMm \left[-\frac{1}{x} \right]_{R}^{R+h} = mgR^2 \left[\frac{1}{R} - \frac{1}{R+h} \right]$$

This work done appears as increase in potential energy

$$\Delta E_p = mgR^2 \left[\frac{1}{R} - \frac{1}{R+h} \right]$$

$$= mg(5h)^2 \left[\frac{1}{5h} - \frac{1}{6h} \right] = \frac{5}{6} mgh$$

74 **(b)**

$$v = \sqrt{\frac{GM}{r}}$$

75 (d)

Acceleration due to gravity on earth is given by $g = \frac{GM}{R^2}$

$$\left(\text{Here}, M_m = \frac{M_e}{9}, R_m\right)$$

$$= \frac{R_e}{2}$$
Hence,
$$\frac{g_e}{g_m} = \frac{M_e}{M_m} \times \frac{R_m^2}{R_e^2} = \frac{9M_e}{M_e} \times \left(\frac{R_e}{2R_e}\right)^2$$
or
$$\frac{g_e}{g_m} = \frac{9}{4}$$
So,
$$\frac{g_m}{2} = \frac{4}{2}$$

: Weight of body on moon

= weight of body on earth
$$\times g_m/g_e$$

= $90 \times \frac{4}{9} = 90 \times \frac{4}{9} = 40 \text{kg}$

76 **(d)**

Kinetic energy of satellite in its orbit

$$E = \frac{1}{2}mv_o^2$$
 or
$$E = \frac{1}{2}m\left(\frac{GM}{r}\right) = \frac{GMm}{2r}$$

kinetic energy at escape velocity

$$E' = \frac{1}{2}mv_e^2$$

$$= \frac{1}{2}m\left(\frac{2GM}{r}\right) = \frac{GMm}{r}$$
$$= 2E$$

Therefore, additional kinetic energy required = 2E - E = E

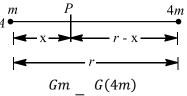
77 **(c)**

For earth,
$$g = \frac{GM}{R^2} = \frac{4}{3}\pi R \rho G$$

For the planet, $g_1 = \frac{GM_1}{R_1^2} = \frac{4}{3} \pi R_1 \rho G$

$$\frac{g}{g_1} = \frac{R}{R_1} = \frac{6400}{320} = 20$$

Let h and h_1 be the distance upto which the man can jump on surface of the earth and planet, then $mgh = mg_1h_1$


$$h_1 = \frac{g}{g_1} h = 20 \times 5 = 100 \text{ m}$$

$$\frac{K_A}{K_B} = \frac{r_B}{r_A} = \left(\frac{R+h_B}{R+h_A}\right) = \left(\frac{R+2R}{R+R}\right) = \frac{3}{2}$$

Actually gravitational force provides the centripetal force

80 (c)

> Let gravitation field is zero at *P* as shown in figure.

$$\frac{Gm}{x^2} = \frac{G(4m)}{(r-x)^2}$$

$$\Rightarrow 4x^2 = (r - x)^2$$

$$\Rightarrow 2x = r - x$$

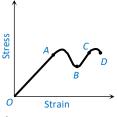
$$\Rightarrow \qquad x = \frac{r}{3}$$

$$\Rightarrow x = \frac{r}{3}$$

$$\therefore V_p = \frac{Gm}{x} - \frac{G(4m)}{r - x}$$

$$= -\frac{3Gm}{r} - \frac{6Gm}{r} = -\frac{9Gm}{r}$$

Mechanical Properties of Solids


- 1. The bulk modulus of an ideal gas at constant temperature
 - a) Is equal to its volume *V*

b) Is equal to p/2

c) Is equal to its pressure *p*

- d) Can not be determined
- 2. Young's modulus of perfectly rigid body material is
- b) Zero

- c) $10 \times 10^{10} \text{ Nm}^{-2}$
- d) $1 \times 10^{10} \text{ Nm}^{-2}$
- A graph is shown between stress and strain for a metal. The part in which Hooke's law holds good is 3.

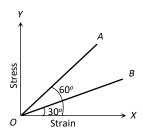
a) *OA*

b) AB

d) CD

- Two identical wires are suspended from the same rigid support but one is of copper and the other is of iron. Young's modulus of iron is thrice that of copper. The weights to be added on copper and iron wires so that the ends are on the same level must be in the ratio of
 - a) 1:3

b) 2:1

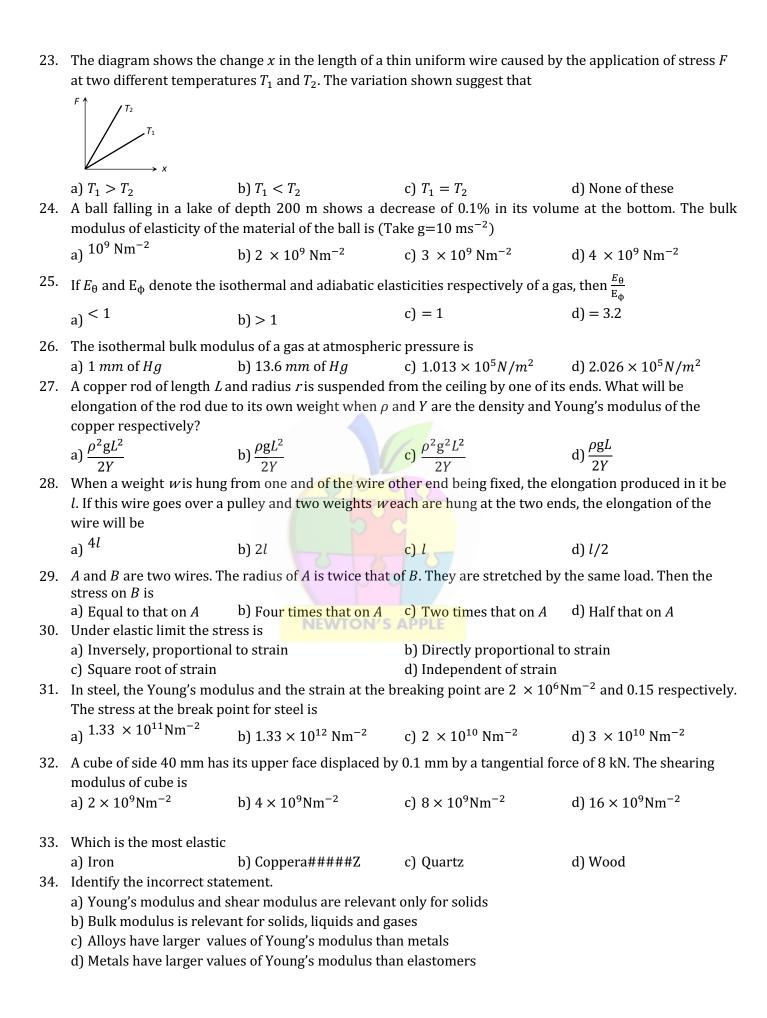

c) 3:1

d) 4:1

- Young's modulus of the wire depends on 5.
 - a) Length of the wire c) Material of the wire

- b) Diameter of the wire d) Mass hanging from the wire

- Hooke's law defines 6.
 - a) Stress
- b) Strain
- c) Modulus of elasticity
- d) Elastic limit
- The stress versus strain graphs for wires of two materials A and B are as shown in the figure. If Y_A and Y_B are the Young's modulii of the materials, then


a) $Y_B = 2Y_A$

b) $Y_A = Y_B$

c) $Y_B = 3Y_A$

d) $Y_A = 3Y_B$

0	The diagram shows stress	a a /a atmain aumya fan tha m	ectorials A and B. Even the	gurrog vio infonthat
8.	The diagram shows stress v/s strain curve for the materials A and B . From the curves we infer that			
	Strain			
	a) A is brittle but B is due	ctile	b) A ductile and B is britt	ele
	c) Both A and B are duct	ile	d) Both A and B are brittle	le
9.	Which of the following roforce?	ods of same material underg	goes maximum elongation	when subjected to a given
		-	c) $L= 2m, d= 1 mm$	d) $L= 2m$, $d= 2 mm$
10.	Which one of the following	-		
	b) Bulk modulus is releva	perfectly rigid body is zero ant for solids, liquids and ga		
	c) Rubber is less elastic t	nan steer and shear modulus are rele	vant for solids	
11.		is dimensionally equivalen		
	a) Surface tension	b) Stress	c) Strain	d) None of these
12.	A wire of length L and rad	lius r fixed at one end and a	f <mark>orce</mark> Fapplied to the other	end produces an extension l .
	The extension produced	in another wire of the same	<mark>mat</mark> erial of length 2 <i>L</i> and	radius $2r$ by a force $2F$, is
	a) <i>l</i>	b) 2 <i>l</i>		d) $\frac{l}{2}$
13.	_	ibstances has the hi <mark>ghest el</mark>		D.C.
11	a) Sponge	b) Steel	c) Rubber	d) Copper
14.		g equal forces, the increase		The in the ratio $1:\sqrt{2}$. If they he ratio
	a) $\sqrt{2}:2$		c) 1:1	d) 1 : 2
		b) $2:\sqrt{2}$		
15.		4.0m and area of cross-secti		
	a) 1.33 mm	per is $1.2 \times 10^{11} N/m^2$, the b) 1.33 cm	c) 2.66 mm	d) 2.66 <i>cm</i>
16.		to isothermal elasticities o		a) Lioo ent
	a) $\frac{3}{4}$	b) $\frac{4}{3}$	c) 1	d) $\frac{5}{3}$
4.5		· ·		$\frac{a}{3}$
17.	Modulus of rigidity of a li a) Non zero constant	quid b) Infinite	a) Zara	d) Can not be predicted
18		,	c) Zero er of second wire is twice tl	hat of the first. On applying
10.		e wires, the extension produ		
	a) 1:4	b) 1:2	c) 2:1	d) 4:1
19.	A cube is subjected to a u	niform volume compressio	n. If the side of the cube de	creases by 1% the bulk
	strain is			
	a) 0.01	b) 0.02	c) 0.03	d) 0.06
20.	•	a wire of length <i>L</i> and radiu	s r is $Y N/m^2$. If the length	and radius are reduced to
	L/2 and $r/2$, then its You a) $Y/2$	b) Y	c) 2 <i>Y</i>	d) 4 <i>Y</i>
21.		of elasticity, if stress is inc	•	
	a) Becomes zero	b) Remains constant	c) Decreases	d) Increases
22.		re is doubled, then the brea		
	a) 6 <i>F</i>	b) 4 <i>F</i>	c) 8F	d) <i>F</i>

Isothermal bulk modulus = Pressure of gas

2

Young's modulus of a material is given by

$$Y = \frac{F \times L}{A \times l}$$

For a perfectly rigid body,

l = 0

 $\therefore Y = \infty$ (infinite)

3 (a)

> In the figure OA, stress \propto strain i.e. Hooke's law hold good

(a) 4

 $Y \propto F$

$$\therefore \quad \frac{F_{Cu}}{F_{Fe}} = \frac{Y_{Cu}}{Y_{Ee}} = \frac{1}{3}$$

5

Young's modulus of wire depends only on the nature of the material of the wire

(c) 6

7

$$\frac{Y_A}{Y_B} = \frac{\tan \theta_A}{\tan \theta_B} = \frac{\tan 60}{\tan 30} = \frac{\sqrt{3}}{1/\sqrt{3}} = 3 \Rightarrow Y_A = 3Y_B$$

8 (b)

> In ductile materials, yield point exist while in Brittle material, failure would occur without yielding

As
$$l = \frac{F}{\pi(\frac{d^2}{4})} \times \frac{L}{Y}$$
 so, $l \propto \frac{L}{d^2}$

 $\frac{L}{d^2}$ is maximum for option (c).

10 (a)

11 (b)

12 (a)

> When strain is small, the ratio of the longitudinal stress to the corresponding longitudinal strain is called the Young's modulus (Y) of the material of the body.

$$Y = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{l/L}$$

Where F is force, A the area, l the change in length and L the original length.

$$\therefore Y = \frac{FL}{\pi r^2 l}$$

r being radius of the wire.

Given $r_2 = 2r_1$, $L_2 = 2L_1$, $F_2 = 2F_1$

Since, Young's modulus is a property of material, we have

$$Y_1 = Y_2$$

$$\therefore \frac{F_1 L_1}{\pi r_1^2 l_1} = \frac{2F_1 \times 2L_1}{\pi (2r_1)^2 l_2}$$

$$l_2 = l_1 = l$$

Hence, extension produced is same as that in the other wire.

13 (b)

> Out of the given substances, steel has greater value of Young's modulus. Therefore, steel has highest elasticity.

14 (c)

(d)
$$\frac{Y_A}{Y_B} = \frac{\tan \theta_A}{\tan \theta_B} = \frac{\tan 60}{\tan 30} = \frac{\sqrt{3}}{1/\sqrt{3}} = 3 \Rightarrow Y_A = 3Y_B$$

$$\Delta l \propto \frac{1}{r^2}, \Delta l' \propto \frac{2l}{(\sqrt{2r})^2} \text{ or } \Delta l' \propto \frac{1}{r^2}$$
(b)
In ductile materials, yield point exist while in
$$\therefore \frac{\Delta l}{\Delta l'} = 1$$

15 **(a)**

$$l = \frac{FL}{AY} = \frac{4.8 \times 10^3 \times 4}{1.2 \times 10^{-4} \times 1.2 \times 10^{11}} = 1.33 \ mm$$

16

For triatomic gas $\gamma = \frac{4}{3}$

17

18 (d)

Young's modulus,
$$Y = \frac{\text{Stress}}{\text{Strain}} = \frac{\frac{\text{Force}}{\text{Area}}}{\frac{l}{L}}$$

Where, l is change in length and L the original length.

Force =mg, Area $=A=\pi r^2$

(as all other quantities remain same for both the wires)

Given,
$$r_2 = 2r_1$$

$$\therefore \frac{l_1}{l_2} = \frac{(2r_1)^2}{r_1^2} = \frac{4}{1}$$

19 **(c**)

Let L be the length of each side of cube. Initial volume = L^3 . When each side decreases by 1%. New length $L' = L - \frac{1}{100} = \frac{99L}{100}$

New volume = $L'^3 = \left(\frac{99L}{100}\right)^3$, change in volume,

$$\Delta V = L^{3} - \left(\frac{99L}{100}\right)^{3}$$

$$= L^{3} \left[1 - \left(1 - \frac{3}{100} + \cdots\right)\right] = L^{3} \left[\frac{3}{100}\right] = \frac{3L^{3}}{100}$$

$$\therefore Bulk \ strain = \frac{\Delta V}{V} = \frac{3L^{3}/100}{L^{3}} = 0.03$$

20 **(b)**

Young's modulus of wire does not vary with dimension of wire. It is the property of given material

21 **(b)**

According the Hooke's law modulus of elasticity E. $= \frac{\text{Stress}}{\text{Strain}} = \text{Constant}$

Hence, if stress is increased, then the ratio of stress to strain remains constant.

22 **(b)**

Breaking force $\propto \pi r^2$ If thickness (radius) of wire is doubled then breaking force will become four times

23 **(a)**

Elasticity of wire decreases at high temperature i.e. at higher temperature slope of graph will be less

So we can say that $T_1 > T_2$

$$\Delta p = h\rho g = 200 \times 10^{3} \times 10 \text{Nm}^{-2}$$

$$= 2 \times 10^{6} \text{ Nm}^{-2}$$

$$K = \frac{\Delta p}{\frac{\Delta V}{V}} = \frac{2 \times 10^{6}}{\frac{0.1}{100}} = \frac{2 \times 10^{8}}{0.1} \text{ Nm}^{-2} = 2 \times 10^{9} \text{ Nm}^{-2}$$

25 (a

Isothermal elasticity = p, Adiabatic elasticity = γP

$$\therefore \frac{E_{\theta}}{E_{\phi}} = \frac{1}{\Upsilon}, \Upsilon > 1$$

$$\therefore \frac{E_{\theta}}{E_{\phi}} < 1$$

26 **(c)**

Isothermal elasticity $K_i = P = 1atm = 1.013 \times 10^5 N/m^2$

27 **(d)**

The weight of the rod can be assumed to act at its mid-point.

Now, the mass of the rod is

$$M = V\rho$$
$$\Rightarrow M = AL\rho$$

Here, A = area of cross - sections,

L= length of the rod.

Now, we know that the Young's modulus

$$Mg = Vpg$$

On putting the value of M from Eq.(i), we get $l = \frac{AL\rho \cdot gL}{2AY}$ or $l = \frac{\rho gL^2}{2V}$

$$Y = \frac{w}{A} \times \frac{L}{l}$$
 or $l = \frac{wL}{YA}$

When wire goes over a pulley and weight w is attached each free ad end of wire, then the tension in the wire is doubled, but the original length of wire is reduced to half, so extension in the wire is

$$l' = \frac{2w \times (L/2)}{YA} = \frac{wL}{YA} = l$$

29 **(b)**

$$Stress = \frac{force}{Area} :: Stress \propto \frac{1}{\pi r^2}$$

$$\frac{S_B}{S_A} = \left(\frac{r_A}{r_B}\right)^2 = (2)^2 \Rightarrow S_B = 4S_A$$
30 **(b)**

Stress = Strain
=
$$2 \times 10^{11} \times 0.15 \text{ Nm}^{-2} = 3 \times 10^{10} \text{ Nm}^{-2}$$

Shearing modulus of cube

$$\eta = \frac{FL}{Al}$$

$$= \frac{8 \times 10^3 \times 40 \times 10^{-3}}{(40 \times 10^{-3})^2 \times (0.1 \times 10^{-3})} = 2 \times 10^9 \text{Nm}^{-2}$$

34 **(d)**

Metals have larger values of Young's modulus than elastomers because the alloys having high densities, *ie*, alloys have larger values of Young's modulus than metals.

Fluid Mechanics

surface of water. With what acceleration the container must be accelerated, so that the water does not come out? a) G b) $\frac{g}{2}$ c) $\frac{2gH}{2}$ d) $\frac{2gh}{a}$ 2. The pressure on a swimmer 20 m below the surface of water at sea level is a) 1.0 atm b) 2.0 atm c) 2.5 atm d) 3.0 atm If a drop of water is broken in to smaller drops the surface energy a) Increases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is v ₁ = 3 m/s v ₂ = 1.5 m/s 2. The pressure at half the depth of a lake is equal to 10 cm, then its speed of flow is (g = 10 ms ⁻²) a) 10 ms ⁻¹ b) 140 ms ⁻¹ c) 1.4 ms ⁻¹ d) 0.1 ms ⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be					
2. The pressure on a swimmer 20 m below the surface of water at sea level is a) 1.0 atm b) 2.0 atm c) 2.5 atm d) 3.0 atm 3. If a drop of water is broken in to smaller drops the surface energy a) Increases c) Remains unchanged b) Decreases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is V ₁ = 1.5 m/s	1.	surface of water. With w	S	-	-
a) 1.0 atm b) 2.0 atm c) 2.5 atm d) 3.0 atm 3. If a drop of water is broken in to smaller drops the surface energy a) Increases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is v ₁ =1.5 m/s NEWTON'S APPLE a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10 ⁻² Nm ⁻¹ . a) 8 mJ b) 2.46 mJ c) 4.93 × 10 ⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms ⁻²) a) 10 ms ⁻¹ b) 140 ms ⁻¹ c) 1.4 ms ⁻¹ d) 0.1 ms ⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be		a) G	b) $\frac{g}{2}$	c) $\frac{2gH}{2}$	d) $\frac{2gh}{g}$
a) 1.0 atm b) 2.0 atm c) 2.5 atm d) 3.0 atm 3. If a drop of water is broken in to smaller drops the surface energy a) Increases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is v ₁ =1.5 m/s NEWTON'S APPLE a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10 ⁻² Nm ⁻¹ . a) 8 mJ b) 2.46 mJ c) 4.93 × 10 ⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms ⁻²) a) 10 ms ⁻¹ b) 140 ms ⁻¹ c) 1.4 ms ⁻¹ d) 0.1 ms ⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be	2.	The pressure on a swimn	ner 20 m below the surface	of water at sea level is	u
3. If a drop of water is broken in to smaller drops the surface energy a) Increases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is v ₁ = 3 m/s a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10 ⁻² Nm ⁻¹ . a) 8 mJ b) 2.46 mJ c) 4.93 × 10 ⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms ⁻²) a) 10 ms ⁻¹ b) 140 ms ⁻¹ c) 1.4 ms ⁻¹ d) 0.1 ms ⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be		•			d) 3.0 atm
a) Increases c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is V ₂ = 1.5 m/s NEWTON'S APPLE	3.				,
c) Remains unchanged d) Can increases as well as decreases 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is v ₁ = 1.5 m/s a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10 ⁻² Nm ⁻¹ . a) 8 mJ b) 2.46 mJ c) 4.93 × 10 ⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms ⁻²) a) 10 ms ⁻¹ b) 140 ms ⁻¹ c) 1.4 ms ⁻¹ d) 0.1 ms ⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be		•			
 4. An incompressible liquid flows through a horizontal tube as shown in the following fig. Then the velocity of the fluid is V₁ = 1.5 m/s NEWTON'S APPLE 					as decreases
a) $3.0 m/s$ b) $1.5 m/s$ c) $1.0 m/s$ d) $2.25 m/s$ 5. Determine the energy stored in the surface of a soap bubble of radius $2.1 \mathrm{cm}$ if its surface tension is $4.5 \times 10^{-2} \mathrm{Nm}^{-1}$. a) $8 \mathrm{mJ}$ b) $2.46 \mathrm{mJ}$ c) $4.93 \times 10^{-4} \mathrm{J}$ d) None of these 6. If the velocity head of a stream of water is equal to $10 \mathrm{cm}$, then its speed of flow is $(g = 10 \mathrm{ms}^{-2})$ a) $10 \mathrm{ms}^{-1}$ b) $140 \mathrm{ms}^{-1}$ c) $1.4 \mathrm{ms}^{-1}$ d) $0.1 \mathrm{ms}^{-1}$ 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) $10 m$ b) $20 m$ c) $60 m$ d) $30 m$ 8. For a liquid which is rising in a capillary, the angle of contact is a) $0 \mathrm{bt}$ b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is $8 \mathrm{cms}^{-1}$. If the perpendicular distance between the layers is $0.1 \mathrm{cm}$, then velocity gradient will be	4.	An incompressible liquid	l flows thr <mark>ough a hor<mark>izonta</mark></mark>		
a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is $4.5 \times 10^{-2} \text{ Nm}^{-1}$. a) 8 mJ b) 2.46 mJ c) $4.93 \times 10^{-4} \text{ J}$ d) None of these 6. If the velocity head of a stream of water is equal to 10 cm , then its speed of flow is $(g = 10 \text{ ms}^{-2})$ a) 10 ms^{-1} b) 140 ms^{-1} c) 1.4 ms^{-1} d) 0.1 ms^{-1} 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) 0btuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms^{-1} . If the perpendicular distance between the layers is 0.1 cm , then velocity gradient will be		of the fluid is	5		
a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is $4.5 \times 10^{-2} \text{ Nm}^{-1}$. a) 8 mJ b) 2.46 mJ c) $4.93 \times 10^{-4} \text{ J}$ d) None of these 6. If the velocity head of a stream of water is equal to 10 cm , then its speed of flow is $(g = 10 \text{ ms}^{-2})$ a) 10 ms^{-1} b) 140 ms^{-1} c) 1.4 ms^{-1} d) 0.1 ms^{-1} 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) 00 tuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms^{-1} . If the perpendicular distance between the layers is 0.1 cm , then velocity gradient will be			$v_2 = 1.5 \text{ m/s}$		
a) 3.0 m/s b) 1.5 m/s c) 1.0 m/s d) 2.25 m/s 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is $4.5 \times 10^{-2} \text{ Nm}^{-1}$. a) 8 mJ b) 2.46 mJ c) $4.93 \times 10^{-4} \text{ J}$ d) None of these 6. If the velocity head of a stream of water is equal to 10 cm , then its speed of flow is $(g = 10 \text{ ms}^{-2})$ a) 10 ms^{-1} b) 140 ms^{-1} c) 1.4 ms^{-1} d) 0.1 ms^{-1} 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) 00 tuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms^{-1} . If the perpendicular distance between the layers is 0.1 cm , then velocity gradient will be			NEW TONKS	ADDLE	
a) $3.0 m/s$ b) $1.5 m/s$ c) $1.0 m/s$ d) $2.25 m/s$ 5. Determine the energy stored in the surface of a soap bubble of radius $2.1 \mathrm{cm}$ if its surface tension is $4.5 \times 10^{-2} \mathrm{Nm^{-1}}$. a) $8 \mathrm{mJ}$ b) $2.46 \mathrm{mJ}$ c) $4.93 \times 10^{-4} \mathrm{J}$ d) None of these 6. If the velocity head of a stream of water is equal to $10 \mathrm{cm}$, then its speed of flow is $(g = 10 \mathrm{ms^{-2}})$ a) $10 \mathrm{ms^{-1}}$ b) $140 \mathrm{ms^{-1}}$ c) $1.4 \mathrm{ms^{-1}}$ d) $0.1 \mathrm{ms^{-1}}$ 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) $10 m$ b) $20 m$ c) $60 m$ d) $30 m$ 8. For a liquid which is rising in a capillary, the angle of contact is a) $0 \mathrm{btuse}$ b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is $8 \mathrm{cms^{-1}}$. If the perpendicular distance between the layers is $0.1 \mathrm{cm}$, then velocity gradient will be		$v_1 = 3 \ m/s \longrightarrow A$		AFFLE	
 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10⁻² Nm⁻¹. a) 8 mJ b) 2.46 mJ c) 4.93 × 10⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms⁻²) a) 10 ms⁻¹ b) 140 ms⁻¹ c) 1.4 ms⁻¹ d) 0.1 ms⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 			1.5 A v		
 5. Determine the energy stored in the surface of a soap bubble of radius 2.1 cm if its surface tension is 4.5 × 10⁻² Nm⁻¹. a) 8 mJ b) 2.46 mJ c) 4.93 × 10⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms⁻²) a) 10 ms⁻¹ b) 140 ms⁻¹ c) 1.4 ms⁻¹ d) 0.1 ms⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 		a) 3.0 <i>m/s</i>	b) 1.5 <i>m/s</i>	c) 1.0 m/s	d) 2.25 <i>m/s</i>
$4.5 \times 10^{-2} \text{ Nm}^{-1}$. a) 8 mJ b) 2.46 mJ c) $4.93 \times 10^{-4} \text{ J}$ d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is $(g = 10 \text{ ms}^{-2})$ a) 10 ms^{-1} b) 140 ms^{-1} c) 1.4 ms^{-1} d) 0.1 ms^{-1} 7. If pressure at half the depth of a lake is equal to $2/3$ pressure at the bottom of the lake then what is depth of the lake a) $10 m$ b) $20 m$ c) $60 m$ d) $30 m$ 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms^{-1} . If the perpendicular distance between the layers is 0.1 cm , then velocity gradient will be	5.		•		•
 a) 8 mJ b) 2.46 mJ c) 4.93 × 10⁻⁴ J d) None of these 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms⁻²) a) 10 ms⁻¹ b) 140 ms⁻¹ c) 1.4 ms⁻¹ d) 0.1 ms⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 			•		
 6. If the velocity head of a stream of water is equal to 10 cm, then its speed of flow is (g = 10 ms⁻²) a) 10 ms⁻¹ b) 140 ms⁻¹ c) 1.4 ms⁻¹ d) 0.1 ms⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 		a) 8 mJ	b) 2.46 mJ	c) 4.93×10^{-4} J	d) None of these
 a) 10 ms⁻¹ b) 140 ms⁻¹ c) 1.4 ms⁻¹ d) 0.1 ms⁻¹ 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 	6.			•	
 7. If pressure at half the depth of a lake is equal to 2/3 pressure at the bottom of the lake then what is depth of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 					
of the lake a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be	7.	,	,		,
 a) 10 m b) 20 m c) 60 m d) 30 m 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 		-	, , , , , , , , , , , , , , , , , , , ,	r	· · · · · · · · · · · · · · · · · · ·
 8. For a liquid which is rising in a capillary, the angle of contact is a) Obtuse b) 180° c) Acute d) 90° 9. The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 			b) 20 m	c) 60 m	d) 30 m
 a) Obtuse b) 180° c) Acute d) 90° The relative velocity of two parallel layers of water is 8 cms⁻¹. If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be 	8.				,
9. The relative velocity of two parallel layers of water is 8 cms ⁻¹ . If the perpendicular distance between the layers is 0.1 cm, then velocity gradient will be		-			d) 90°
layers is 0.1 cm, then velocity gradient will be	9.	,	,	•	,
· · · · · · · · · · · · · · · · · · ·	٠.	_	-	15 5 cm5 . If the perpendic	dia distance setween the
41408 U1508 CIDUS - U180S -		a) 40 s^{-1}	b) $50 \mathrm{s}^{-1}$	c) 60 s^{-1}	d) 80 s^{-1}

10.	when pressure is 50 kPa at a point. If the velocity of flow has to be 2 ms ⁻¹ at some other point, the pressure at that point should be					
11.		b) 100 kPa arometer is $75 cm$ at sea le 0^4 . The height of the hill is	c) 48.5 kPa evel and 50 <i>cm</i> at the top of	d) 24.25 kPa a hill. Ratio of density of		
	a) 250 m	b) 2.5 <i>km</i>	c) 1.25 km	d) 750 m		
12.	-	erature, the angle of conta				
13.	radius of the first one but	teel falls through a viscous of the same mass is dropp		ocity v . If a ball of twice the		
	terminal velocity (neglect v	12				
	a) $\frac{1}{2}$	b) $\frac{v}{\sqrt{2}}$	c) <i>v</i>	d) 2 <i>v</i>		
14.	$10 \text{cm} \times 6 \text{cm} \text{ is } 2 \times 10^{-4} \text{ J}$	ing the size of a rectangula. The surface tension of the	film in Nm^{-1} is			
15.	-	b) 3.3×10^{-2} an hydroelectric power sta (in kg) that must fall per s b) 10^{5}				
16.	,			that the height of liquid in		
		a_1 and h_2 as shown in the fi				
	the acceleration a is					
		NEWTON'S	APPLE			
	a) $\frac{g(h_1-h_2)}{2l}$ towards right		b) $\frac{g(h_1-h_2)}{2l}$ towards left			
	c) $\frac{g(h_1-h_2)}{l}$ towards right		d) $\frac{g(h_1-h_2)}{l}$ towards left			
17.	•	wire enclosing a surface ar	·	film If the area of the		
17.		educed by 50%, the energ	_			
	a) 100%	b) 75%	c) 50%	d) 25%		
18.	-	y other salt which is solub		er, its surface tension		
	a) Increases		b) Decreases			
19.	c) May increase or decrea The pressure inside two s volume is	oap bubble is 1.01 and 1.02	d) None of the above 2 atm respectively. The rati	o of their respective		
	a) 2	b) 4	c) 6	d) 8		
20.		of diameter <i>D</i> breaks into 2				
	a) $2\pi TD^2$	b) $4\pi TD^2$	c) $\pi T D^2$	d) $8\pi TD^2$		

21.	R. The terminal velocity of the bigger drop is				
	a) $v \frac{R}{r}$	b) $v \frac{R^2}{r^2}$	c) <i>v</i>	d) 2 <i>v</i>	
22.	ı	•	er drops of radius r , the rec	quired energy is	
	20 1		c) $(4 \pi R^2 - 4 \pi r^2)nT$		
23.	Why the dam of water re	servoir is thick at the botto			
	a) Quantity of water incr	•	b) Density of water incre	-	
	c) Pressure of water incr	eases with depth	d) Temperature of water	increases with depth	
24.	The level of water in a talleakage of water from the	_	ea 10 cm² is made in the bo	ottom of the tank. The rate of	
	a) 10^{-2} m 3 s $^{-1}$	b) $10^2 \text{m}^3 \text{s}^{-1}$	c) $10 \text{ m}^3 \text{s}^{-1}$	d) $10^{-2} \text{m}^{-3} \text{s}^{-1}$	
25.	-		e equal upthrust on them;		
	a) Both pieces must have		b) Both pieces must have	-	
26	c) Both pieces must have		d) Both are floating to th	e same depth	
26.	Streamline flow is more l		h) lovy donaity and high v	ala an alter	
	a) high density and low vc) high density and high	•	b) low density and high with d) low density and low v	•	
27.			and that of radius $3R$ is W_2 .		
_,.	a) 1:3	b) 1:2	c) 1:4	d) 1:9	
28.				he ratio of heights through	
	which liquid will rise in t	he tubes is			
	a) 1:2	b) 2:1	c) 1:4	d) 4:1	
			1		
29.	_		water and is accelerated ho		
	acceleration a towards ri	ght. Pressure is (i) maxim	<mark>um at, and (</mark> ii) minimum at		
	A	а			
	В				
	a) (i) <i>B</i> (ii) <i>D</i>	b) (i) C (ii) D	c) (i) <i>B</i> (ii) <i>C</i>		
30.	_		f surface tension of water is		
	a) 4°C	b) 25°C	c) 50°C	d) 75°C	
31.	with half of its volume ab		Γhe specific gravity of the o	If it is placed in oil, it floats oil is	
	a) $\frac{5}{3}$	b) $\frac{4}{3}$	c) $\frac{3}{2}$	d) 1	
32.	A horizontal pipe line car	ries water in streamline fl	ow. At a point where the cr	coss-sectional area is 10 cm^2	
	the water velocity is 1 ms cross-sectional area is 5 c		a. The pressure of water at	another point where the	
	a) 200 Pa	b) 400 Pa	c) 500 Pa	d) 800 Pa	
33.			$10^5 \mathrm{Nm}^{-2}$. When the valve i		
		$10^5 \ \text{Nm}^{-2}$, then velocity of			
	a) 100 ms ⁻¹	b) 10 ms ⁻¹	c) 1 ms ⁻¹	d) $10\sqrt{10} \text{ ms}^{-1}$	
			-		

- 34. The neck and bottom of a bottle are 3 cm and 15 cm in radius respectively. If the cork is pressed with a force 12 N in the neck of the bottle, then force exerted on the bottom of the bottle is
 - a) 30 N

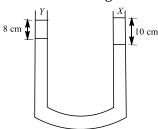
- b) 150 N
- c) 300 N
- d) 600 N
- 35. If the atmospheric pressure is P_a , then the pressure P at depth h below the surface of a liquid of density ρ open to the atmosphere is
 - a) $P_a \frac{\rho gh}{2}$
- b) $P_a \rho g h$
- c) *P*_a

- d) $P_a + \rho g h$
- 36. A ball whose density is $0.4 \times 10^3 \text{kg m}^{-3}$ falls into water from a height of 9 cm. To what depth does the ball sink?
 - a) 9 cm

b) 6 cm

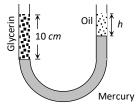
- c) 4.5 cm
- d) 2.25 cm
- 37. Horizontal tube of non-uniform cross-section has radii of 0.1 m and 0.05 m respectively at M and N. For a streamline flow of liquid the rate of liquid flow is

- a) Changing continuously with time
- b) Greater at M than N

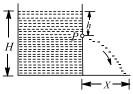

c) Greater at N than at M

- d) Same at M and N
- 38. In a turbulent flow, the velocity of the liquid in contact with the walls of the tube is
 - a) Zero

b) maximum

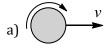

c) in between zero and maximum

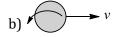
- d) equal to critical velocity
- 39. A block of ice floats on a liquid of density 1.2 in a beaker then level of liquid when ice completely melt
 - a) Remains same
- b) Rises
- c) Lowers
- d) (a), (b) or (c)
- 40. A square wire frame of size L is dipped in a liquid. On taking out a membrane is formed. If the surface tension of liquid is T, then the force acting on a frame will be
 - a) 2 T/L
- b) 4T/L
- c) 8 T/L
- d) 16T/L
- 41. A liquid X of density 3.36 g cm⁻³ is poured in a U-tube, which contains Hg. Another liquid Y is poured in left arm with height 8 cm, upper levels of X and Y are same. What is density of Y?



- a) $0.8 \, \text{gcc}^{-1}$
- b) $1.2 \, \text{gcc}^{-1}$
- c) $1.4 \, \text{gcc}^{-1}$
- d) 1.6gcc⁻¹

42. A vertical U-tube of uniform inner cross section contains mercury in both sides of its arms. A glycerin (density = 1.3 g/cm^3) column of length 10 cm is introduced into one of its arms. Oil of density $0.8 \, gm/cm^3$ is poured into the other arm until the upper surfaces of the oil and glycerin are in the same horizontal level. Find the length of the oil column. Density of mercury = $13.6 \ g/cm^3$


- a) 10.4 cm
- b) 8.2 cm
- c) 7.2 cm
- d) 9.6 cm
- A tank is filled with water upto a height *H*. Water is allowed to come out of a hole *P* in one of the walls at a depth *h* below the surface of water (see figure). Express the horizontal distance *X* in terms of *H* and *h*

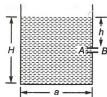


- a) $X = \sqrt{h(H-h)}$
- b) $X = \sqrt{\frac{h}{2}(H h)}$ c) $X = 2\sqrt{h(H h)}$ d) $X = 4\sqrt{(H h)}$
- 44. Bernoulli's theorem is a consequence of the law of conservation of
 - a) Momentum
- b) Mass

- c) Energy
- d) angular momentum
- Two very wide parallel glass plates are held vertically at a small separation r, and dipped in water of surface tension S. Some water climbs up in the gap between the plates. If p_0 is the atmospheric pressure, then the pressure of water just below the water surface in the region between the two plates is
 - a) $p_0 \frac{2S}{r}$
- b) $p_0 + \frac{2S}{r}$ (c) $p_0 \frac{4S}{r}$
- d) $p_0 + \frac{4S}{r}$

To get the maximum flight, a ball must be thrown as

- d) None of these
- A liquid of density 800 kg m³ is filled in a tank open at the top. The pressure of the liquid at the bottom of the tank is 6.4 atm. The velocity of efflux through a hole at the bottom is $(1 \text{ atm} = 10^5 \text{ Nm}^{-2})$
 - a) 10 ms^{-1}
- b) 20 ms^{-1}
- c) 30 ms^{-1}
- d) 40 ms^{-1}
- When a number of small droplets combine to form a large drop, then
 - a) energy is absorbed


- b) energy is liberated
- c) energy is neither liberated nor absorbed
- d) process is independent of energy
- The velocity of the surface layer of water in a river of depth 10~m is 5~m s $^{-1}$. The shearing stress between the surface layer and the bottom layer is (Coefficient of viscosity of water, $\eta = 10^{-3}$ SI units)
 - a) $0.6 \times 10^{-3} \text{N m}^{-2}$
- b) $0.8 \times 10^{-3} \text{N m}^{-2}$
- c) $0.5 \times 10^{-3} \text{N m}^{-2}$ d) 10^{-3}N m^{-2}

: HINTS AND SOLUTIONS :

1 **(d)**

Bernoulli's theorem is a form of conversion of energy, hence we have

$$H_0 + h\rho g = H_0 + \frac{1}{2}\rho v^2$$

When vessel is accelerated down with an acceleration g (free fall), then pseudo acceleration g will act vertically upwards and effective value of g is zero. Hence, water will not flow.

2 **(d**)

Pressure at depth $h = p_a + \rho g h$ where p_a is atmospheric pressure

$$= 1.01 \times 10^5 \text{ Nm}^2$$

$$p_{\text{total}} = 1.01 \times 10^5 + 10^3 \times 10 \times 20$$

$$= 3.01 \times 10^5 \text{ Pa} = 3 \text{ atm}$$

3 **(a**

When a drop of radius R splits into n smaller drops, (each of radius r), then surface area of liquid increases and hence surface energy increases.

4 (c)

If the liquid is incompressible then mass of liquid entering through left end, should be equal to mass of liquid coming out from the right end

$$\therefore M = m_1 + m_2 \Rightarrow Av_1 = Av_2 + 1.5A.v$$

$$\Rightarrow A \times 3 = A \times 1.5 + 1.5A.v \Rightarrow v = 1 \text{ m/s}$$

5 **(c)**

Surface energy $U = S \times 2 \times 4\pi R^2$ (As there are 2 surfaces in soap bubble) $U = 4.5 \times 10^{-2} \times 8\pi \times (2.1 \times 10^{-2})^2$ = 4.93×10^{-4} J

6 (c)

Velocity head, $h = \frac{1}{2} \frac{v^2}{g}$ or $v = \sqrt{2gh}$

$$=\sqrt{2\times10\times0.1}=1.4~{\rm ms^{-1}}$$

7 **(b**

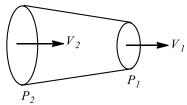
Pressure at bottom of the lake = $P_0 + h\rho g$ Pressure at half the depth of a lake = $P_0 + \frac{h}{2}\rho g$ According to given condition

$$P_0 + \frac{1}{2}h\rho g = \frac{2}{3}(P_0 + h\rho g) \Rightarrow \frac{1}{3}P_0 = \frac{1}{6}h\rho g$$

$$\Rightarrow h = \frac{2P_0}{\rho g} = \frac{2 \times 10^5}{10^3 \times 10} = 20m$$

8 **(c)**

The angle θ , which the tangent to the liquid surface at the point of contact makes with the solid surface inside the liquid, is called the angle of contact or the capillary angle. The angle of contact is acute (less than 90°) in the case of liquids which wet the walls of the container, then liquid rises in the capillary and angle of contact is obtuse (greater than 90°) for the liquid which do not wet the walls of the container, ie, they fall in capillary tube.


9 **(d)**

The velocity gradient

$$= \frac{\Delta V}{\Delta r} = \frac{8}{0.1} = 80 \,\mathrm{s}^{-1}$$

10 **(c)**

According to Bernoulli's equation for horizontal pipe,

$$p_{1} + \frac{1}{2}\rho v_{1}^{2} = p_{2} + \frac{1}{2}\rho v_{2}^{2}$$

$$\Rightarrow p_{1} + \frac{1}{2}\rho(v_{1}^{2} - v_{2}^{2}) = p_{2}$$

$$\Rightarrow p_{2} = 50 \times 10^{3} + \frac{1}{2} \times 10^{3} \times (1^{2} - 2^{2})$$

$$\Rightarrow p_{2} = 50 \times 10^{3} - 1.5 \times 10^{3}$$

$$= 48.5 \text{ kPa}$$

11 **(b)**

Difference of pressure between sea level and the top of hill

$$\Delta P = (h_1 - h_2) \times \rho_{Hg} \times g = (75 - 50) \times 10^{-2} \times \rho_{Hg} \times g ...(i)$$

and pressure difference due to h metre of air $\Delta P = h \times \rho_{air} \times g$

By equating (i) and (ii) we get

$$h \times \rho_{air} \times g = (75 - 50) \times 10^{-2} \times \rho_{Hg} \times g$$

$$h = 25 \times 10^{-2} \left(\frac{\rho_{Hg}}{\rho_{air}} \right) = 25 \times 10^{-2} \times 10^{4}$$
$$= 2500m$$

 \therefore Height of the hill = 2.5 km

12 **(a)**

With the increase in temperature, the surface tension of liquid decreases and angle of angle also decreases

13 **(a)**

Given,
$$v = \frac{2r^2 \rho g}{9n}$$
 ...(i)

Mass =
$$\frac{4}{3}\pi r^3 \rho = \frac{4}{3}\pi (2r)^3 \rho_1$$

Or
$$\rho_1 = \rho/8$$

Terminal velocity of second ball is

$$v_1 = \frac{2(2r)^2(\rho/8)g}{8\eta} = \frac{v}{2}$$

14 **(b)**

Change in surface energy = 2×10^{-4} J

$$\Delta A = 10 \times 6 - 8 \times 3.75$$

$$= 30 \text{ cm}^2$$

$$=30 \times 10^{-4} \text{m}^2$$

Work done $W = T \times 2 \times \text{(change in area)}$

Now, change in surface energy = Work done

$$2 \times 10^{-4} = T \times 2 \times 30 \times 10^{-4}$$

$$T = 3.3 \times 10^{-2} \text{ Nm}^{-1}$$

15 (d)

Using

Potential energy = $mgh \Rightarrow 1 \times 10^6 = m \times 10 \times 10^6$

 $m = 10^4 kg/sec$

16 **(c)**

Pressure on left end of horizontal tube,

$$p_1 = p_0 + h_1 \rho g$$

Pressure on right end of horizontal tube,

$$p_2 = p_0 + h_2 \rho g$$

 $Asp_1 > p_2$, so acceleration should be towards right hand side. If *A* is the area of cross-section of the tube in the horizontal portion of U-tube, then

$$p_1 A - p_2 A = (l A \rho)a$$

Or
$$(h_1 - h_2)\rho$$
 g $A = l A \rho a = \frac{g(h_1 - h_2)}{l}$

17 **(c)**

Surface energy = surface tension \times surface area $E = T \times 2A$

New surface energy,

$$E_1 = T \times 2\left(\frac{A}{2}\right) = T \times A$$

% decrease in surface energy = $\frac{E - E_1}{E} \times 100$

$$=\frac{2TA-TA}{2TA}\times 100=50\%$$

18

When a highly soluble salt (like sodium chloride) is dissolved in water, the surface tension of water increases

19 (a)

Excess pressure is given by $p = \frac{4T}{r}$

$$\implies r = \frac{4T}{p}$$

$$\therefore \frac{r_1}{r_2} = \frac{p_2}{p_1} = \frac{1.02}{1.01} = \frac{102}{101}$$

Ratio of volume's = $\frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{(102)^3}{(101)^3} \approx 2$

20 (a)

NEWTON'

Surface tension (T) of a liquid is equal to the work (W) required to increases the surface area (ΔA) of the liquid film by unity at constant temperature.

 $W = T\Delta A = \text{surface energy}$

Also, volume of big drop = $27 \times$

AP volume of small drop

Where V' is volume of big drop of diameter D and V the volume of small drop of diameter d.

$$\therefore \frac{4}{2}\pi \left(\frac{D}{2}\right)^3 = 27 \times \frac{4}{3}\pi \left(\frac{d}{2}\right)^3$$

$$\Rightarrow \frac{D}{2} = 3 \times \frac{d}{2}$$

$$\Rightarrow d = \frac{D}{3}$$

Radius of small drop, $r = \frac{d}{2} = \frac{D}{4}$.

 \therefore Change in surface energy = $T(A_2 - A_1)$

$$= T[27.4\pi r^2 - 4\pi R^2]$$

$$= T4\pi \left[27 \left(\frac{D}{6} \right)^2 - \left(\frac{D}{6} \right)^2 \right]$$

$$=4\pi T \left[\frac{3D^2}{4} - \frac{D^2}{4} \right] = 2\pi D^2 T$$

21 (b)

$$v = \frac{2r^2(\rho - \sigma)g}{\eta}$$

$$n\alpha r^2$$

$$\frac{v}{V} = \frac{r^2}{R^2} \Rightarrow V = \frac{vR^2}{r^2}$$

22 **(a**

Work done = surface tension \times increase in surface area

$$= T(n 4 \pi r^2 - 4 \pi R^2)$$

23 **(c)**

A torque is acting on the wall of the dam trying to make it topple. The bottom is made very broad so that the dam will be stable

24 **(a)**

Velocity of efflux, $v = \sqrt{2 gh}$;

Volume of liquid flowing out per sec

=
$$v \times A = \sqrt{2 \text{ gh}} \times A$$

= $\sqrt{2 \times 10 \times 5} \times (10 \times 10^{-4}) = 10^{-2} \text{m}^3 \text{s}^{-1}$

25 (c

Since, up thrust $(F) = V \sigma g \ i.e. F \propto V$

26 **(d**)

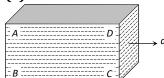
Streamline flow is more likely for non-viscous and incompressible liquid. So low density and low viscosity is the correct answer.

27 **(d)**

$$W = T \times 4\pi R^{2}$$

$$\Rightarrow \frac{W_{1}}{W_{1}} = \frac{T \times 4\pi R^{2}}{T \times 4\pi (3R)^{2}}$$

$$= \frac{T \times 4\pi R^{2}}{T \times 36\pi R^{2}} = \frac{1}{9}$$


$$\therefore W_{1}: W_{2} = 1: 9$$

28 **(b)**

Height, $h \propto 1/R$

So
$$h_1/h_2 = R_2/R_1 = 0.4/0.2 = 2$$

29 (a)

Due to acceleration towards right, there will be a pseudo force in a left direction. So the pressure will be more on rear side (Points A and B) in comparison with front side (Point D and C) Also due to height of liquid column pressure will be more at the bottom (points B and C) in comparison with top (point A and D) So overall maximum pressure will be at point B and minimum pressure will be at point D

30 (d)

Surface tension of water decreases with rise in temperature

31 **(b)**

Weight of body

= weight of water displaced

= weight of oil displaced

$$\Rightarrow \frac{2}{3}V\rho_w g = \frac{1}{2}V\rho_0 g$$
$$\Rightarrow \rho_0 = \frac{4}{3}\rho_w$$

∴ Specific gravity of oil =
$$\frac{\rho_0}{\rho_{yy}} = \frac{4}{3}$$

32 **(c)**

Since cross-sectional area is halved, therefore, velocity is doubled.

Now,
$$p_1 = 2000 \text{Pa}, v_1 = 1 \text{ms}^{-1}$$

$$p_2 = ?, v_2 = 2 \text{ ms}^{-1}$$

Again
$$p_2 + \frac{1}{2} \times 1000 \times 2 \times 2$$

$$= 2000 + \frac{1}{2} \times 1000 \times 1 \times 1$$

or
$$p_2 = 2000 + 500(1 - 4) = 500$$
Pa

33 **(b)**

Bernoulli's theorem for unit mass of liquid

$$\frac{P}{\rho} + \frac{1}{2}v^2$$
 constant

As the liquid starts flowing, it pressure energy decreases

$$\frac{1}{2}v^2 = \frac{P_1 - P_2}{0}$$

$$\frac{1}{2}v^2 = \frac{3.5 \times 10^5 - 3 \times 10^5}{10^3}$$

$$\Rightarrow v^2 = \frac{2 \times 0.5 \times 10^5}{10^3}$$

$$\Rightarrow v^2 = 100$$

$$\Rightarrow v = 10 \text{ ms}^{-1}$$

34 **(c)**

NEWTON'S

Pressure at neck of bottle

$$p_1 = \frac{F_1}{A_1} = \frac{F_1}{\pi \, r_1^2}$$

Similarly, pressure at bottom of bottle

$$p_2 = \frac{F_2}{A_2} = \frac{F_2}{\pi \, r_2^2}$$

According to Pascal's law, liquids transmits pressure equal in all directions.

$$\therefore \frac{F_2}{A_2} = \frac{F_2}{\pi r_2^2} \text{ or } F_2 = F_1 \times \left(\frac{r_2}{r_1}\right)^2$$

$$=12 \times \left(\frac{15}{3}\right)^2 = 12 \times 25 = 300$$
N

35 **(d)**

$$P = P_a + \rho g h$$

36 **(b)**

The velocity of ball before entering the water surface

$$v = \sqrt{2gh} = \sqrt{2g \times 9}$$

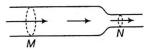
When a ball enters into water, due to upthrust of water the velocity of ball decreases (or retarded) The retardation,

$$a = \frac{\text{apparent weight}}{\text{mass of ball}}$$

$$a = \frac{V(\rho - \sigma)g}{V\rho} = \frac{(\rho - \sigma)g}{\rho}$$

$$\left(\frac{0.4 - 1}{0.4}\right)g = -\frac{3}{2}g$$

If h be the depth upto which ball sink, then


$$0 - v^2 = 2 \times \left(\frac{-3}{2}g\right) \times h$$

$$\Rightarrow 2g \times 9 = 3gh$$

$$\therefore h = 6 \text{ cm}$$

37 **(c)**

The velocity of flow will increases if cross-section decreases and *vice* – *versa*

ie,
$$A_1v_1 = A_2v_2$$

or $A_v = \text{constant}$

Therefore, the rate of liquid flow will be greater at *N* than at *M*.

38 **(d)**

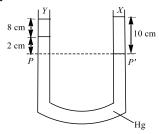
In a turbulent flow, the velocity of the liquid in contact with the walls of the tube is equal is critical velocity.

39 **(b)**

The volume of liquid displaced by floating ice $V_D = \frac{M}{2}$

Volume of water formed by melting ice, $V_F = \frac{M}{\sigma_W}$

If
$$\sigma_L > \sigma_W$$
, then $\frac{M}{\sigma_L} < \frac{M}{\sigma_W}$ i. e. $V_D < V_F$

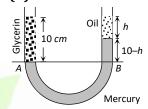

i.e. volume of liquid displaced by floating ice will be lesser than water formed and so the level if liquid will rise

40 (c)

Since the wire frame is dipped in liquid, therefore its membrane has two free surfaces. Total length of square wire frame in contact of membrane $= 2 \times \text{perimeter}$ of square $= 2 \times 4L = 8L$ Hence, force acting on a frame $F = Tl = T \times 8L = 8L$

41 (a)

As shown in figure, in the two arms of a tube pressure remains same on surface *PP'*.



Hence, $8 \times \rho_y \times g \times 2 \times \rho_{Hg} \times g = 10 \times \rho_x \times g$

$$38\rho_y + 2 \times 113.6 = 10 \times 3.36$$

or
$$\rho_y = \frac{36.6 - 27.2}{8} = 0.8 \text{ g cc}^{-1}$$

42 **(d**)

At the condition of equilibrium

Pressure at point A =Pressure at point B

$$P_A = P_B \Rightarrow 10 \times 1.3 \times g$$
$$= h \times 0.8 \times g + (10$$
$$-h) \times 13.6 \times g$$

By solving we get h = 9.6 cm

43 **(c)**

Vertical distance covered by water before striking ground = (H - h). Time taken is, $t = \sqrt{2(H - h)g}$; Horizontal velocity of water coming out of hole at $P, u = \sqrt{2gh}$

∴ Horizontal range
=
$$ut = \sqrt{2gh} = \sqrt{2(H - g)/g}$$

$$=2\sqrt{h(H-h)}$$

44 **(c)**

According to the Berboulli's theorem the total energy (pressure energy, potential energy and kinetic energy) of an incompressible and non viscous fluid in steady flow through a pipe remains constant throughout the flow.

ie,
$$p + \rho g h + \frac{1}{2} \rho v^2 = \text{constant.}$$

So, it is clear that Bernouli's theorem is a consequence of the law of conservation of energy.

45 (a)

Here, the free liquid surface between the plates will be cylindrical which is curved along one axis (parallel to the plates). The radius of curvature of meniscus, R = r/2. For cylindrical surface

$$p_0 - p = \frac{S}{R} = \frac{S}{r/2} = \frac{2S}{r}$$
$$\therefore p = p_0 - \frac{2S}{r}$$

46 **(b)**

When a ball is given anticlockwise rotation along with linear motion towards RHS then it will have maximum flight

47 (d)

Velocity of efflux $v = \sqrt{2gh}$

But
$$h \rho g = p$$

$$\therefore hg = \frac{p}{\rho}$$

$$\therefore hg = \frac{p}{\rho}$$

$$\therefore v = \sqrt{\frac{2p}{\rho}}$$

$$= \sqrt{\frac{2 \times 6.4 \times 10^5}{800}} \text{ms}^{-1}$$
$$= 40 \text{ ms}^{-1}$$

48 (b)

> When a number of small droplets coalesce to form a bigger drop surface energy is released because its surface area decreases.

49 (a)

Using Pascal's law

$$P_1 = P_2 \Rightarrow \frac{F_1}{\left(\frac{\pi d_1^2}{4}\right)} = \frac{F_2}{\left(\frac{\pi d_2^2}{4}\right)} \Rightarrow F_2 = \frac{d_2^2}{d_1^2} F_1$$

Thermal Properties of Matter

1.	If the temperature	of the sun were to increa	se from <i>T</i> to 2 <i>T</i> and it	s radius from R to $2R$, when the
	ratio of radiant ene	rgy received on earth to	what it was previousl	y, will be
	a) 4	b) 16	c) 32	d) 64
2.	A composite rod ma	ade of copper ($\alpha = 1.8 \times$	$10^{-5} \mathrm{K}^{-1}$) and steel ($\alpha = 1.2 \times 10^{-5} \text{ K}^{-1}$) is heated.
	Then			
	a) It bends with ste	el on concave side	b) It bends with	copper on concave side
	c) It does not expan	nd S	d) Data is insuffi	cient
3.	Heat travels throug			
	a) Radiation	b) Conduction	c) Convection	d) None of these
4.	-		ds are kept between the	same temperature and their area
				he rate of heat transmission in the
	two rods will be equa			
	a) $K_1 A_2 = K_2 A_1$	b) $K_1 A_1 = K_2 A_2$	c) $K_1 = K_2$	d) $K_1 A_1^2 = K_2 A_2^2$
5.	Two conducting rods	A and B of s <mark>ame length an</mark>	<mark>d cross-sectiona</mark> l area a	re connected (i) In series (ii) In
	-			°C is maintained. If thermal
			e ratio of heat current f	lowing in parallel combination to
	that flowing in series	combination is		
	100°C 3K K 0°C	3 <i>K</i>		
	100°C 3K K 0°C	100°C K 0°C		
		(11)		
	(i) 16	(ii) 3	1	1
	a) $\frac{16}{3}$	b) $\frac{3}{16}$	c) 1	d) $\frac{1}{3}$
6.	5	30°C is mixed with 0.3m ³	of water at 60°C. The	final temperature of the
	mixture is			•
	a) 65°C	b) 70°C	c) 60°C	d) 75°C
7.		•	,	°C, final temperature of the mixture
	is	C	Ü	•
	a) 5°C	b) 0°C	c) 20°C	d) 6.66°C
8.	540 g of ice at 0°C is a	mixed with 540 g of water a	nt 80°C. The final tempe	rature of the mixture is
	a) 0°C	b) 40°C	c) 80°C	d) Less than 0°C
9.	-	f same substance have dian	neters in the ratio $1:2$.	Their thermal capacities are in the
	ratio of			
	a) 1 : 2	b) 1 : 8	c) 1 : 4	d) 2:1

10.	A gas undergoes an adiab	oatic change. Its specific hea	nt in the process is	
	a) Zero	b) 1	c) ∞	d) None of these
11.	In the following figure, tw	vo insulating sheets with th	ermal resistances R and $3R$	R as shown in figure. The
	temperature θ is			
	↑ Q			
	20°C			
	3 <i>R</i> θ			
	R 100°C			
	↑ Q	1.) 6000) FF00	1) 0000
40	a) 20°C	•	c) 75°C	d) 80°C
12.	=	e temperature of a body i	ncreases by 30°. The incr	ease in temperature on
	Fahrenheit scale is			
	a) 50°	b) 40°	c) 30°	d) 54°
13.	-	rature in Fahrenheit scale is		D 4000=
	a) -273° <i>F</i>	b) $-32^{\circ}F$	c) $-460^{\circ}F$	d) -132°F
14.	When vapour condenses	into liquid	137.19	
	a) It absorbs heat		b) It liberates heat	
1 F	c) Its temperature increa		d) Its temperature decrea	
15.	-			nsions is α /°C, then the loss
		e clock if the temperature ri		1
	$\frac{1}{2}\alpha t \times 864000$	$\frac{1}{2}$	$\frac{-\alpha t \times 86400}{2}$	$\frac{1}{2} \alpha t \times 86400$
	$1-\frac{\alpha t}{2}$	b) $\frac{1}{2}\alpha t \times 86400$	$\left(1-\frac{\alpha t}{\alpha}\right)^2$	$1+\frac{\alpha t}{2}$
16.	2	wo rods made of sa <mark>me mat</mark>	2)	4
	_	etween the ends for the tw		- · · · · · · · · · · · · · · · · · · ·
		er second through t <mark>hem wi</mark>		•
	a) 1:3	b) 4:3	c) 8:9	d) 3:2
17.		two substances is 5:6 and		s 3 : 5. Then the ratio
	between heat capacities p	per unit <mark>volume is</mark>	APPLE	
	a) 1:1	b) 2:1	c) 1:2	d) 1:3
18.	-	ne material have radii in th		e temperature. Ratio of
	heat radiation energy em	itted per second by them is		
	a) 1:2	b) 1:8	c) 1:4	d) 1:16
19.		sions are arranged as show		
		en points A and B are main	tained at different tempera	iture, no heat would flow
	through central rod, if			
	$K_1 \stackrel{\smile}{\bigwedge} K_2$			
	$A = \begin{bmatrix} K_1 \\ K_2 \\ K_5 \end{bmatrix} B$			
	K_5			
	K_3 K_4			
	D			
	a) $K_1K_4 = K_2 K_3$		b) $K_1 = K_4$ and $K_2 = K_3$	
	c) $\frac{K_1}{K_4} = \frac{K_2}{K_2}$		d) $K_1K_2 = K_3K_4$.	
20.	43	antorials having coefficies	nt of thormal ownancions	a and a and Voung's
20.		naterials having coefficien		
		ctively are fixed between		
		increase in temperature		ous. If $\alpha_1/\alpha_2=2/3$ and
	stresses developed in t	he two rods are equal, th	en is	
	a) 3/2	b) 1	c) 2/3	d) 1/2

21.	The ratio of thermal cond	auctivity of two roas of all	ierent material is 5:4. The t	wo rous of same area of
	cross-section and same t	hermal resistance will hav	re the lengths in the ratio	
	a) 4:5	b) 9:1	c) 1:9	d) 5 : 4
22.	The coefficient of them	mal conductivity of a roo	l depends on	
	a) Area		b) Length	
	c) Material of rod		d) Temperature differe	ence
23.		heat, in which heat is carr	ied by the moving particles,	
	a) Radiation	b) Conduction	c) Convection	d) Wave motion
24.	The Fahrenheit and Kelv		vill give the same reading at	
	a) -40	b) 313	c) 574.25	d) 732.75
25.	,	d_1 and d_2 and thermal co	,	contact. In the steady state,
			$1 T_2$, the temperature at the	
	a) $\frac{1}{k_1d_2 + k_2d_1}$	b) $\frac{1}{d_1 + d_2}$	c) $\left(\frac{k_1d_1 + k_2d_2}{T_1 + T_2}\right)T_1T_2$	d) $\frac{1}{k_1d_1 + k_2d_2}$
26.	Two uniform brass roo	$\frac{1}{1}$ ls A and B of lengths l ar	$\stackrel{ ext{-}}{\operatorname{and}}$ $\stackrel{ ext{-}}{\operatorname{and}}$ r $\overset{ ext{-}}{\operatorname{cond}}$ r re	espectively are heated to
			e in the volumes of A to th	
	a) 1:1	b) 1: 2	c) 2:1	d) 1: 4
	u) 11 1	5) 1. <u>2</u>	0) 2. 1	u) 11 1
27	Which one of the figure	o gives the temperature	dependence of density wa	ator correctly?
27.	willen one of the figure	a gives the temperature	dependence of density wa	ater correctly:
	^		/	†
	<u>a</u>	8		(Q)
	a) Density (D)	Density (D)	C)	d) (Density (D)
	O D D		O Den	u) _u _O
	50° <u>C</u>	Temperature (T)	50°C	50°C
	Temperature (T)	Temperature (1)	Temperature (T)	Temperature (T)
20	•	10 20		
28.	On a new scale of temper	rature (which is linear) an	d called the W scale, the fre	ezing and boiling points of
28.	On a new scale of temper water are 39° W and 239	rature (which is linear) an 9 ^o W resp <mark>ectively. What w</mark>		ezing and boiling points of
28.	On a new scale of temper water are 39° W and 239 to a temperature of 39°C	rature (which is linear) an 9°W resp <mark>ectively. What w</mark> on the C <mark>elsius scale</mark>	d called the W scale, the fre	ezing and boiling points of e new scale, corresponding
	On a new scale of temper water are 39° W and 239 to a temperature of 39°C a) 200°W	rature (which is linear) an 9°W resp <mark>ectively. What w</mark> on the C <mark>elsius scale</mark> b) 139°W	d called the W scale, the fre	ezing and boiling points of
28. 29.	On a new scale of temper water are 39° W and 23° to a temperature of 39°C a) 200°W The SI unit of mechanica	rature (which is linear) an 9°W resp <mark>ectively. What w</mark> on the C <mark>elsius scale</mark> b) 139°W Il equivalent of heat is	d called the W scale, the fre ill be the temperature on the c) $78^{\circ}W$	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$
29.	On a new scale of temper water are 39° W and 239 to a temperature of 39°C a) 200°W The SI unit of mechanica a) Joule × Calorie	rature (which is linear) an 9°W resp <mark>ectively. What w</mark> on the C <mark>elsius scale</mark> b) 139°W Il equivalent of heat is b) <i>Joule/Calorie</i>	d called the W scale, the free the temperature on the complex of $78^{\rm o}W$	ezing and boiling points of e new scale, corresponding d) 117°W d) Erg/Calorie
29.	On a new scale of temper water are 39° W and 23° to a temperature of 39°C a) 200°W The SI unit of mechanica a) Joule × Calorie The two ends of a rod of	rature (which is linear) an 9°W resp <mark>ectively. What w</mark> on the C <mark>elsius scale</mark> b) 139°W all equivalent of heat is b) <i>Joule/Calorie</i> length <i>L</i> and a uniform cro	d called the W scale, the fre ill be the temperature on the c) 78°W c) Calorie × Erg oss-sectional area A are kep	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and
29.	On a new scale of temper water are 39° W and 23° to a temperature of 39°C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 ($T_1 > T_2$). The rate of	rature (which is linear) an $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform croheat transfer, $\frac{dQ}{dt}$, through	d called the W scale, the fre ill be the temperature on the c) 78°W c) Calorie × Erg oss-sectional area A are kep the rod in a steady state is g	ezing and boiling points of e new scale, corresponding d) $117^{0}W$ d) $Erg/Calorie$ t at two temperature T_{1} and given by
29.	On a new scale of temper water are 39° W and 23° to a temperature of 39°C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 ($T_1 > T_2$). The rate of	rature (which is linear) an $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform croheat transfer, $\frac{dQ}{dt}$, through	d called the W scale, the fre ill be the temperature on the c) 78°W c) Calorie × Erg oss-sectional area A are kep the rod in a steady state is g	ezing and boiling points of e new scale, corresponding d) $117^{0}W$ d) $Erg/Calorie$ t at two temperature T_{1} and given by
29. 30.	On a new scale of temper water are 39° W and 23° C to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 ($T_1 > T_2$). The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$	rature (which is linear) an $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$	d called the W scale, the free the temperature on the comparature of the comparature o	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$
29.	On a new scale of temper water are 39° W and 23° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 ($T_1 > T_2$). The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is	rature (which is linear) an $9^{\circ}W$ respectively. What we on the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crown transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the	d called the W scale, the free till be the temperature on the composition of the control of t	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion
29. 30.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there	rature (which is linear) an $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crocheat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer	d called the W scale, the free till be the temperature on the comparison of the control of th	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m	rature (which is linear) an $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer	d called the W scale, the free till be the temperature on the composition of the temperature on the temperature of the tempe	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion to be a scale, corresponding points of enem scale, corresponding
29. 30.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanical a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume thereof T_2 T_2 T_2 T_3 T_3 T_4 T_4 T_5 T_5 T_5 T_6 T_6 T_7 $T_$	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanical a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume thereof T_2 T_2 T_2 T_3 T_3 T_4 T_4 T_5 T_5 T_5 T_6 T_6 T_7 $T_$	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free the temperature on the comparison of the temperature on the temperature on the temperature on the temperature on the temperature of th	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m A solid substance is at 30° versus time graph is as s	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m A solid substance is at 30° versus time graph is as s	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m A solid substance is at 30° versus time graph is as s	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m A solid substance is at 30° versus time graph is as s	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer stant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanical a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume thereof T_2 T_3 T_4 T_5 T_5 T_6 T_7 T_7 T_7 T_8	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature
29.30.31.	On a new scale of temper water are 39° W and 23° to a temperature of 39° C a) $200^{\circ}W$ The SI unit of mechanica a) $Joule \times Calorie$ The two ends of a rod of T_2 $(T_1 > T_2)$. The rate of a) $\frac{dQ}{dt} = \frac{kL(T_1 - T_2)}{A}$ Which of the following is a) Constant volume there c) Six's maximum and m A solid substance is at 30° versus time graph is as solid substance is at 30° $\frac{240^{\circ}}{\frac{1}{210}}$	rature (which is linear) and $9^{\circ}W$ respectively. What won the Celsius scale b) $139^{\circ}W$ all equivalent of heat is b) $Joule/Calorie$ length L and a uniform crow heat transfer, $\frac{dQ}{dt}$, through b) $\frac{dQ}{dt} = \frac{k(T_1 - T_2)}{LA}$ at the correct device for the mometer inimum thermometer 9° C. To this substance heat	d called the W scale, the free till be the temperature on the color of the temperature on the color of the color of the rod in a steady state is good of the color of the rod in the rod in the color of the rod in the color of the rod in the	ezing and boiling points of e new scale, corresponding d) $117^{\circ}W$ d) $Erg/Calorie$ t at two temperature T_1 and given by d) $\frac{dQ}{dt} = \frac{kA(T_1 - T_2)}{L}$ tion tometer estant rate. Then temperature

33.	In a steady state of thermal conduction, temperature of the ends A and B of a 20 cm long rod are 100°C and 0°C respectively. What will be the temperature of the rod at a point at a distance of 6 cm from the end					
		y. What will be the temperat	ture of the rod at a point at	a distance of 6 <i>cm</i> from the end		
	A of the rod	13.7000) = 00			
	a) -30°C	b) 70°C	c) 5°C	d) None of the above		
34.		-		radius of A is twice the radius of		
		_		both wires conduct heat at the		
		tion between the thermal co	•	12 77 77 /4		
٥.	a) $K_A = 4K_B$	b) $K_A = 2K_B$		d) $K_A = K_B/4$		
35.	, ,) is that temperature at whic				
	a) Matter ceases to		b) Ice melts and wat	er freezes		
	-	ssure of a gas becomes zero				
36.			_	are (i), 20 calories of heat flows		
	_		is shown in figure (ii), the s	same amount of heat will flow		
	through the rods in					
	0°C 100°C	0°C 100°C				
	0°C 100°C (i)	(ii)				
	a) 1 minute	b) 2 minutes	c) 4 minutes	d) 16 minutes		
37	,	*	hermal conductivities K_1 a	K_2 are put together face to		
		plate is constructed, then th				
	K ₁ K ₂					
	K ₁ K ₂	$2K_1K_2$	$(K_1^2 + K_2^2)^{3/2}$	$(K_r^2 + K_r^2)^{3/2}$		
	a) $\frac{K_1 K_2}{K_1 + K_2}$	b) $\frac{1}{K_1 + K_2}$	c) $\frac{(K_1^2 + K_2^2)^{3/2}}{K_1 K_2}$	d) $\frac{(\kappa_1 + \kappa_2)}{2K_1K_2}$		
38.	1 2		1 2	culate the fractional change in		
00.		the temperature is raised l		culate the fractional change in		
		_	_	1) 1 1 \(\times 10 - 3		
20	a) 7.5×10^{-3}	b) 3.0×10^{-3}		d) 1.1×10^{-3}		
39.		ted by a perfectly black bo				
	a) 1	b) 2	c) 3	d) 4		
40.	On heating, the te	mperature at <mark>which water</mark>	<mark>r has minimum</mark> volume is	S		
	a) 0°C	b) 4°C	c) 4K	d) 100°C		

(d)

From Stefan law, the energy radiated by sun is given by. $P = \sigma eAT^4$, assuming e=1 for sun. In 1st case, $P_1 = \sigma e \times 4\pi R^2 \times T^4$

In 2nd case,
$$P_2 = \sigma e \times 4\pi (2R^2) \times (2T^4)$$

= $\sigma e \times 4\pi R^2 \times T^4 \times 64 =$

 $64P_{1}$

The rate at which energy is received by earth is,

$$E = \frac{P}{4\pi R_{SE}^2} \times A_E$$

where A_E = area of earth

 R_{SE} = distance between sun and earth

So, In Ist case,
$$E_1 = \frac{P_1}{4\pi R_{SE}^2} \times A_E$$

$$E_2 = \frac{P_2}{4\pi R_{SE}^2} \times A_E = 64E_1$$

2 (a)

If l_t be length of rod at t°C and l_0 at 0°C, then $l_t = l_0(1 + \alpha t)$

Where α is coefficient of linear expansion. $\Rightarrow l_t$ is proportional to α . Since $\alpha_c > \alpha_s$, therefore copper will expand more, so rod bends with copper on convex side and steel on concave side.

3 (a)

4

5

Heat current $H = \frac{\Delta \theta}{R} \Rightarrow \frac{H_P}{H_S} = \frac{R_S}{R_P}$ In first case : $R_S = R_1 + R_2 = \frac{l}{(3K)A} + \frac{l}{KA} = \frac{4}{3} \frac{l}{KA}$

In second case: $R_P = \frac{R_1 R_2}{R_1 + R_2} = \frac{\frac{1}{(3K)A} \times \frac{l}{KA}}{\left(\frac{l}{(2M)A} + \frac{l}{kA}\right)} = \frac{l}{4KA}$

$$\therefore \frac{H_P}{H_S} = \frac{\frac{4l}{3KA}}{\frac{l}{4KA}} = \frac{16}{3}$$

6

Let the final temperature of the mixture be t. Heat lost by water

at
$$80^{\circ}$$
C = $ms\Delta t$

$$= 0.1 \times 10^3 \times s_{\text{water}} \times (80^\circ - t)$$

$$(\because m =$$

 $V \times d = 0.1 \times 10^3 \text{kg}$

Heat against by water at 60°C

$$= 0.3 \times 10^3 \times s_{\text{water}} \times (t - 1)^3 \times s_{\text$$

60°)

According to principle of Calorimetry,

Heat lost = Heat against

$$0.1 \times 10^3 \times S_{\text{water}} \times (80^{\circ} - t) = 0.3 \times 10^3 \times$$

$$S_{\text{water}} \times (t - 60^{\circ})$$

or
$$(80^{\circ} - t) = 3 \times (t - t)$$

60°)

or
$$4t = 260$$
°C or $t = 65$ °C

(d)

Let θ be the temperature of the mixture.

Heat gained by water at 0° C = Heat lost by water at 10°C

$$c m_1 (\theta - 0) = c m_2 (10 - \theta)$$

$$\theta = \frac{400}{60} = 6.66$$
°C

8

Heat absorbed by 540 g of ice at 0° C to melt out = 540×80 cal. This is exactly what is available in 540 g of water at 80°C to cool down to 0°C

9 (b)

Thermal capacity = $Mass \times Specific heat$ Due to same material both spheres will have same specific heat. Also mass = Volume $(V) \times$ Density(ρ)

∴ Ratio of thermal capacity

$$= \frac{m_1}{m_2} = \frac{V_1 \rho}{V_2 \rho} = \frac{\frac{4}{3} \pi r_1^3}{\frac{4}{3} \pi r_2^3} = \left(\frac{r_1}{r_2}\right)^3 = \left(\frac{1}{2}\right)^3 = 1:8$$

10 **(a)**

$$c = \frac{\Delta Q}{m \cdot \Delta T} = \frac{\Delta Q}{m \times 0} = 0$$

11 (d)

For the two sheets $H_1 = H_2[H] = Rate$ of heat

$$\Rightarrow \frac{(100 - \theta)}{R} = \frac{(\theta - 20)}{3R} \Rightarrow \theta = 80^{\circ}\text{C}$$

The degree Celsius (°C) scale was devised by dividing the range of temperature between the freezing and boiling temperature of pure water at standard atmospheric conditions into 100 equals parts.

For Fahrenheit scale.

Boiling point=212°F,

Freezing point=32°

 \therefore Difference of 100°C = difference of (212° – 32°) = 180°F

$$\therefore \quad \text{Difference of } 30^{\circ} = \frac{180}{100} \times 30 = 54^{\circ}$$

13 **(c)**

$$\frac{F - 32}{9} = \frac{K - 273}{5} \Rightarrow \frac{F - 32}{9} = \frac{0 - 273}{5}$$

$$\Rightarrow F = -459.4^{\circ}F = -460^{\circ}F$$

14 **(b)**

In vapor to liquid phase transition, heat liberates

15 **(b)**

Loss in time per second $\frac{\Delta T}{T} = \frac{1}{2}\alpha\Delta\theta = \frac{1}{2}\alpha(t-0)$

 \Rightarrow loss in time per day

$$\Delta t = \left(\frac{1}{2}\alpha t\right)t = \frac{1}{2}\alpha t \times (24 \times 60 \times 60)$$
$$= \frac{1}{2}\alpha t \times 86400$$

16 **(c)**

$$\frac{Q}{t} = \frac{KA(\theta_1 - \theta_2)}{l} \Rightarrow \frac{Q}{t} \propto \frac{A}{l} \propto \frac{r^2}{l}$$

[As $(\theta_1 - \theta_2)$ and K are constant]

$$\Rightarrow \frac{\left(\frac{Q}{t}\right)_1}{\left(\frac{Q}{t}\right)_2} = \frac{r_1^2}{r_2^2} \times \frac{l_2}{l_1} = \frac{4}{9} \times \frac{2}{1} = \frac{8}{9}$$

17 **(c)**

Heat capacity/volume = $c \times \frac{m}{v} = c \times \rho$

Desired ratio $=\frac{c_1\rho_1}{c_2\rho_1} = \frac{3}{5} \times \frac{5}{6} = 1:2$

18 **(c)**

$$Q = A\varepsilon\sigma T^4 \Rightarrow Q \propto A \propto r^2 \qquad [\because T = \text{constant}]$$
$$\Rightarrow \frac{Q_1}{Q_2} = \frac{r_1^2}{r_2^2} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

19 (a)

The equivalent electrical circuit, figure in these cases is of Wheatstone bridge. No current would flow through central rod *CD* when the bridge is balanced. The condition for balanced Wheatstone

bridge is
$$\frac{P}{Q} = \frac{R}{S}$$
 (in terms of resistances)

$$\frac{1/K_1}{1.K_2} = \frac{1/K_3}{1/K_4} \text{ or } \frac{K_2}{K_1} = \frac{K_4}{K_3}$$
Or $K_1 K_4 = K_2 K_3$

20 **(a)**

Thermal stress is a measure of the internal distribution of force per unit area within body that is applied to the body, in the form of heat

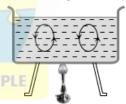
Thermal stress= $Y\alpha\Delta T$

Where Y is Young's modulus, α the coefficient of linear expansion and ΔT the change in temperature

Both the rods are heated,

$$\begin{array}{ll} \therefore & Y_1\alpha_1\Delta T_1 = Y_2\alpha_2\Delta T_2 \\ \text{Since,} & \Delta T_1 = \Delta T_2 \\ \Rightarrow & \frac{Y_1}{Y_2} = \frac{\alpha_2}{\alpha_1} = \frac{3}{2} \end{array}$$

21 **(d)**


Given
$$A_1 = A_2$$
 and $\frac{K_1}{K_2} = \frac{5}{4}$

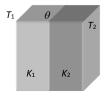
$$\therefore R_1 = R_2 \Rightarrow \frac{l_1}{K_1 A} = \frac{l_2}{K_2 A} \Rightarrow \frac{l_1}{l_2} = \frac{K_1}{K_2} = \frac{5}{4}$$

22 **(c)**

23 (c)

In convection hot particles move upward (due to low density) and light particle move downward (due to high density)

24 **(c)**


Let
$$F = K - X$$

As $\frac{F-32}{9} = \frac{K-273}{5}$
 $\therefore \frac{x-32}{9} = \frac{x-273}{5}$
 $9x - 2457 = 5x - 160$
 $4x - 2457 + 160 = 0$
 $x = \frac{2297}{4} = 574.25^{\circ}$

25 **(a**)

In series both walls have same rate of heat flow. Therefore

$$\frac{dQ}{dt} = \frac{K_1 A (T_1 - \theta)}{d_1} = \frac{K_2 A (\theta - T_2)}{d_2}$$

$$\Rightarrow K_1 d_2 (T_1 - \theta) = K_2 d_1 (\theta - T_2)$$

$$\leftarrow d_1 \xrightarrow{} d_2 \xrightarrow{}$$

$$\Rightarrow \theta = \frac{K_1 d_2 T_1 + K_2 d_1 T_2}{K_1 d_2 + K_2 d_1}$$

26 **(c**)

For brass rod A

Volume
$$V_1 = \pi(2r)^2 \times l$$
 ...(i)

For volume expansion

$$V'_1 = V_1((1 + \gamma \Delta t))$$

 $\Rightarrow V'_1 - V_1 \propto V_1$
Or $\Delta V_1 \propto V_1$...(ii)

Similarly, for brass rod B

volume
$$V_2 = \pi(r)^2 \times 2l$$
 ...(iii)
and $\Delta V_2 \propto V_2$...(iv)

Dividing Eq. (i) by Eq. (ii), we get

$$\frac{V_1}{V_2} = \frac{\pi 4r^2 l}{\pi r^2 2l} = \frac{2}{1}$$

From eqs. (ii) and (iv),

$$\frac{\Delta V_1}{\Delta V_2} = \frac{2}{1}$$

27 (a)

Anomalous density of water is given by (a). It has maximum density at 4°C.

28 **(d)**

$$\frac{X - LFP}{UFP - LFP} = \text{constant}$$

Where X =Any given temperature on that scale

L. F. P. = Lower fixed point (Freezing point)

U. F. P. = Upper fixed point (Boiling point)

$$\frac{W - 39}{239 - 39} = \frac{39 - 0}{100 - 0}$$

$$\Rightarrow \frac{W - 39}{200} = \frac{39}{100} \Rightarrow W = 78 + 39 \Rightarrow W = 117^{\circ}W$$

29 **(b**)

$$J = \frac{W}{Q} = \frac{Joule}{cal}$$

30 **(d)**

31 (d)

A thermopile is a sensitive instrument, used for detection of heat radiation and measurement of their intensity

32 **(b)**

In the given graph CD represents liquid state

33 **(b)**

In steady state, temperature gradient = constant

$$\begin{array}{c|c}
& & & & \\
100^{\circ}C & & & \\
& & \times 6 \text{ cm} & \rightarrow \\
& & \times & \\
\Rightarrow \frac{(\theta_A - \theta_x)}{6} = \frac{(\theta_A - \theta_B)}{20} \Rightarrow (100 - \theta_x) \\
& = \frac{6}{20} \times (100 - 0) \\
\Rightarrow \theta_x = 70^{\circ}C
\end{array}$$

34 **(d)**

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{K_A}{K_B} = \frac{A_B}{A_A} = \left(\frac{r_B}{r_A}\right)^2 = \frac{1}{4} \Rightarrow K_A = \frac{K_B}{4}$$

35 **(c**)

We know that $P = P_0(1 + \gamma t)$ and $V = V_0(1 + \gamma t)$ And $\gamma = (1/273)/^{\circ}C$ for $t = -273^{\circ}C$, we have P = 0 and V = 0

Hence, at absolute zero, the volume and pressure of the gas become zero

36 (a)

$$\frac{Q}{t} = \frac{KA\Delta\theta}{l} \Rightarrow \frac{\Delta\theta}{(l/KA)} = \frac{\Delta\theta}{R} [R = \text{Thermal resistance}]$$

$$\Rightarrow t \propto R \quad [\because Q \text{ and } \Delta\theta \text{ are same}]$$

$$\Rightarrow \frac{t_p}{t_s} = \frac{R_P}{R_S} = \frac{R/2}{2R} = \frac{1}{4} \Rightarrow t_P = \frac{t_S}{4} = \frac{4}{4} = 1 \text{min}$$

[Series resistance $R_S = R_1 + R_2$ and parallel resistance $R_P = \frac{R_1 R_1}{R_2 + R_2}$]

NEWTON 37 (b)

In series,
$$R_{eq} = R_1 + R_2 \Rightarrow \frac{2l}{K_{eq}A} = \frac{l}{K_1A} + \frac{l}{K_2A}$$

$$\Rightarrow \frac{2}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} \Rightarrow K_{eq} = \frac{2K_1K_2}{K_1 + K_2}$$

38 (c)

Variations of density with temperature is given by

$$\rho' = \frac{\rho}{1 + \gamma \Delta \theta}$$

Fraction change is

$$\frac{\rho' - \rho}{\rho} = \left[\frac{1}{1 + 49 \times 10^{-5} \times 30} - 1 \right]$$
$$= 1.5 \times 10^{-2}$$

39 **(d)**

40 **(b)**

Water has maximum density at 4°C so at this temperature, it has minimum volume.

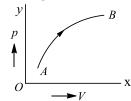
Thermodynamics

RED ZONE

If an ideal gas is compre	ssed isothern	nally then		
a) No work is done again	nst gas		b) Heat is released by the	gas
c) The internal energy of	of gas will inci	rease	d) Pressure does not char	ige
In an adiabatic process,	the state of a	gas is changed	from p_1, V_1, T_1 to p_2, V_2, T_2 . V	Vhich of the following
relation is correct?				O
a) $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$	b) $p_1 V_1^{\gamma - 1}$	$= p_2 V_2^{\gamma - 1}$	c) $T_1 p_1^{\gamma} = T_2 V_2^{\gamma}$	d) $T_1 V_1^{\gamma} = T_2 V_2^{\gamma}$
During an adiabatic exp	ansion of 2 m	oles of a gas, th	<mark>e change</mark> in internal energy	was found $-50J$. The
work done during the pr	rocess is			
a) Zero	b) 100 <i>J</i>		c) -50 <i>J</i>	d) 50 <i>J</i>
100 g of water is heated	from30°C to	50°C.Ign <mark>orin</mark> g t	he sli <mark>g</mark> ht expansion of the v	vater, the change in its
internal energy is				
(Specific heat of water is	s 4184 J/k <mark>g/l</mark>	()		
a) 8.4 kJ	b) 84 <mark>kJ</mark>	NEWTON'S	c) 2.1 kJ	d) 4.2 kJ
p - V plots for two gase	s during a <mark>dia</mark>	<mark>batic processes</mark>	are shown in figure. Plots	1 and 2 should correspond
respectively to				
p				
<u>→ V</u>				
a) He and O ₂	b) O ₂ and	Не	c) He and Ar	d) O ₂ and N ₂
When heat is given to a	gas in an isot	hermal change,	the result will be	
a) External work done			b) Rise in temperature	
	a) No work is done againt. c) The internal energy of In an adiabatic process, relation is correct? a) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ During an adiabatic expansion work done during the process a) Zero 100 g of water is heated internal energy is (Specific heat of water is a) 8.4 kJ $p-V$ plots for two gases respectively to P A He and O ₂ When heat is given to a given t	a) No work is done against gas c) The internal energy of gas will incomplete in an adiabatic process, the state of a relation is correct? a) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ b) $p_1V_1^{\gamma-1}$ During an adiabatic expansion of 2 m work done during the process is a) Zero b) 100 J 100 g of water is heated from 30°C to internal energy is (Specific heat of water is 4184 J/kg/Fa) 8.4 kJ b) 84 kJ $p-V$ plots for two gases during adial respectively to P A He and O_2 b) O_2 and When heat is given to a gas in an isother.	c) The internal energy of gas will increase In an adiabatic process, the state of a gas is changed relation is correct? a) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ b) $p_1V_1^{\gamma-1} = p_2V_2^{\gamma-1}$ During an adiabatic expansion of 2 moles of a gas, the work done during the process is a) Zero b) $100J$ 100 g of water is heated from 30°C to 50°C. Ignoring to internal energy is (Specific heat of water is 4184 J/kg/K) a) 8.4 kJ b) 84 kJ $p-V$ plots for two gases during adiabatic processes respectively to $p = V$ a) He and V When heat is given to a gas in an isothermal change,	a) No work is done against gas c) The internal energy of gas will increase In an adiabatic process, the state of a gas is changed from p_1, V_1, T_1 to p_2, V_2, T_2 . Verelation is correct? a) $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$ b) $p_1V_1^{\gamma-1} = p_2V_2^{\gamma-1}$ c) $T_1p_1^{\gamma} = T_2V_2^{\gamma}$ During an adiabatic expansion of 2 moles of a gas, the change in internal energy work done during the process is a) Zero b) $100J$ c) $-50J$ 100 g of water is heated from 30°C to 50°C. Ignoring the slight expansion of the vinternal energy is (Specific heat of water is 4184 J/kg/K) a) 8.4 kJ b) 84 kJ c) 2.1 kJ $p - V$ plots for two gases during adiabatic processes are shown in figure. Plots is respectively to $p = V$ a) He and V_2 b) V_2 and He c) He and Ar When heat is given to a gas in an isothermal change, the result will be

Pressure-temperature relationship for an ideal gas undergoing adiabatic change is $(\gamma = C_p/C_v)$

b) $PT^{-1+\gamma} = \text{constant}$


d) External work done and also rise in temp.

c) $P^{\gamma-1}T^{\gamma} = \text{constant}$ d) $P^{1-\gamma}T^{\gamma} = \text{constant}$

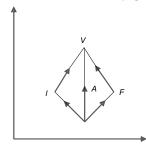
c) Increase in internal energy

a) $PT^{\gamma} = \text{constant}$

8. Figure shows a thermodynamical process on one moles a gas. How does the work done in the process change with time?

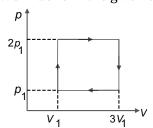
a) Decrease continuously

b) Increases continuously


c) Remains constant

- d) First increase and then decreases
- 9. A gas at pressure 6×10^5 Nm⁻² and volume 1 m³ and its pressure falls to 410^5 Nm⁻², When its volume is $3m^3$. Given that the indicator diagram is a straight line, work done by the system is
 - a) 6×10^5 J
- b) 3×10^5 J
- c) 4×10 J
- d) 10×10^5 J
- 10. In the given p-Vdiagram, I is the initial state and F is the final state

The gas goes from I to F by


- (i)*IAF*
- (ii) IBF
- (iii)*ICF*

The heat absorbed by gas is

- a) The same in all three processes
- c) Greater in (i) than in (ii)

- b) The same in (i) and (ii)
- d) Greater in (iii) than in (ii)
- 11. Work done in the given cyclic process is

a) n. 1/

- b) $3p_1V_1$
- c) $2p_1V_1$

- d) zero
- 12. A gas expands adiabatically at constant pressure, such that its temperature $T \propto \frac{1}{\sqrt{V}}$. The value of C_p/C_v of the gas is
 - a) 1.30

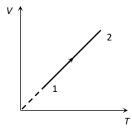
b) 1.50

c) 1.67

- d) 2.00
- 13. A mass of dry air at NTP. is compressed to $\frac{1}{20}$ th of its original volume suddenly. If $\gamma=1.4$, the final pressure would be
 - a) 20 atm
- b) 66.28 atm
- c) 30 atm
- d) 150 atm
- 14. If a system undergoes contraction of volume then the work done by the system will be
 - a) Zero

- b) Negligible
- c) Negative
- d) Positive
- 15. A gas is suddenly expanded such that its final volume becomes 3 times its initial volume. If the specific heat at constant volume of the gas is 2R, then the ratio of initial to final pressure is nearly equal to
 - a) 5

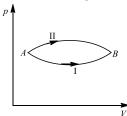
b) 6.5


c) 7

d) 3.5

- 16. For an ideal gas, in an isothermal process a) Heat content remains constant c) Temperature remains constant
- b) Heat content and temperature remain constant
 - d) None of the above
- 17. The phenomenon of sound propagation in air is
 - a) Isothermal process
- b) Isobaric process
- c) Adiabatic process
- d) None of these
- 18. For an adiabatic expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal to
 - a) $-\sqrt{\gamma} \frac{\Delta V}{V}$
- b) $-\frac{\Delta V}{V}$

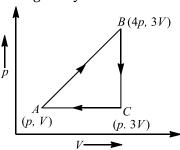
- 19. The pressure inside a tyre is 4 atm at 27°C. If the tyre burts suddenly, new temperature will be $(\gamma = 7/5)$
 - a) $300(4)^{7/2}$
- b) $300(4)^{2/7}$
- c) $300(2)^{7/2}$
- d) $300 (4)^{-2/7}$


- 20. First law of thermodynamics is given by
 - a) dQ = dU + PdV
- b) $dQ = dU \times PdV$
- c) dQ = (dU + dV)P
- d) dQ = PdU + dV
- 21. Volume versus temperature graph of two moles of helium gas is as shown in figure. The ratio of heat absorbed and the work done by the gas in process 1-2 is

a) 3

- 22. In a cyclic process, work done by the system is
 - a) Zero

- b) Equal to heat given to the system
- c) More than the heat given to system
- d) Independent of heat given to the system
- 23. A system goes from A to B via two processes I and II as shown in figure. If ΔU_1 and ΔU_2 are the changes in internal energies in the processes I and II respectively, then


NEWTON'S APPLE

a) $\Delta U_1 = \Delta U_2$

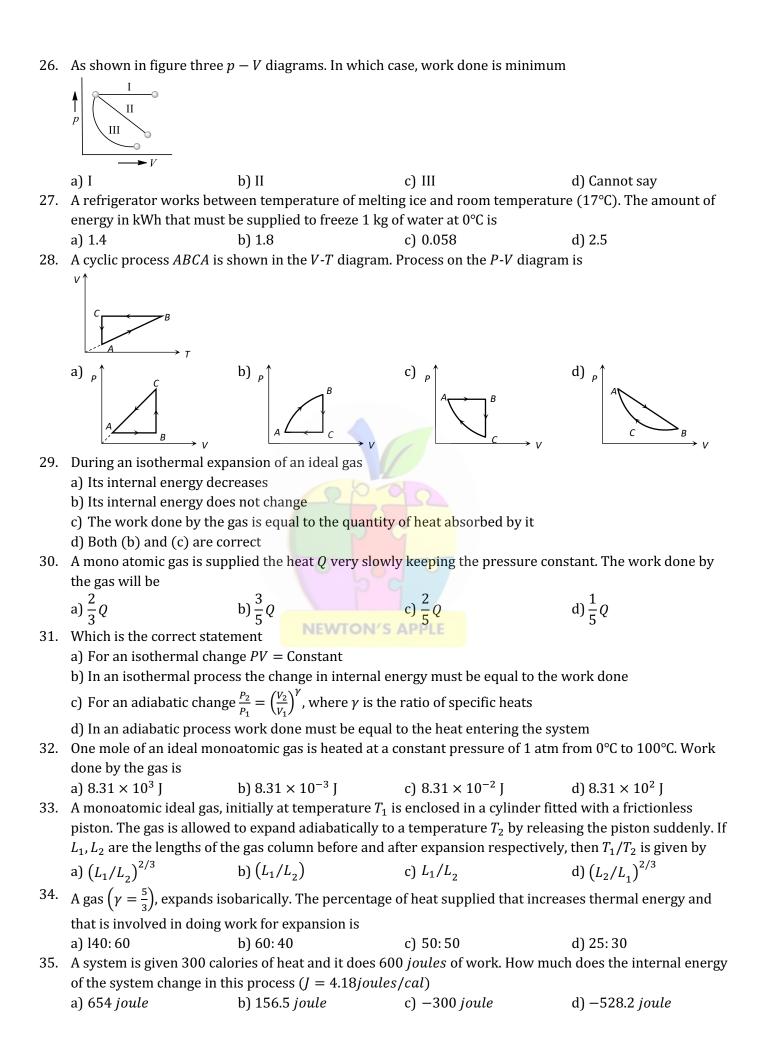
b) Relation between ΔU_1 and ΔU_2 cannot be determined

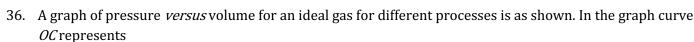
c) $\Delta U_2 > \Delta U_1$

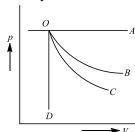
- d) $\Delta U_2 < \Delta U_1$
- 24. A sample of ideal monoatomic gas is taken round the cycle ABCA as shown in the figure. The work done during the cycle is

a) 3*pV*

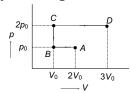
b) Zero


c) 9pv

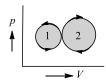

- d) 6*pv*
- 25. 500 J of heat energy is removed from 4 moles of a monoatomic ideal gas at constant volume. The temperature drops by
 - a) 40°C


b) 30°C

c) 10°C


d) 0°C

- a) Isochoric process
- b) Isothermal process
- c) Isobaric process
- d) Adiabatic process
- 37. p V diagram of an ideal gas is as shown in figue. Work done by the gas in the process *ABCD* is


- a) 4 p V₀
- b) 2 $p_0 V_0$
- c) $3 p_0 V_0$
- d) $p_0 V_0$

- 38. The temperature of the system decreases in the process of
 - a) Free expansion

b) Adiabatic expansion

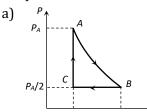
c) Isothermal expansion

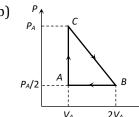
- d) Isothermal compression
- 39. In the indicator diagram, net amount of work done will be

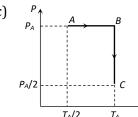
- a) Positive
- b) Zero

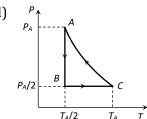
- c) Infinity
- d) Negative
- 40. The adiabatic Bulk modulus of a perfect gas at pressure is given by
 - a) *I*

b) 2P

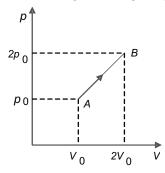

c) P/2


- d) γP
- 41. When an ideal gas ($\gamma = 5/3$) is heated under constant pressure, then what percentage of given heat energy will be utilised in doing external work
 - a) 40%


b) 30%


c) 60%

- d) 20%
- 42. Three moles of an ideal gas $\left(C_P = \frac{7}{2}R\right)$ at pressure P_A and temperature T_A is isothermally expanded to twice its initial volume. It is then compressed at constant pressure to its original volume. Finally the gas is compressed at constant volume to its original pressure P_A . The correct P-V and P-T diagrams indicating the process are


- 43. In an isochoric process if $T_1 = 27^{\circ}\text{C}$ and $T_2 = 127^{\circ}\text{C}$, then P_1/P_2 will be equal to
 - a) 9/59

b) 2/3

c) 3/4

d) None of these

44. The *p-V* diagram of 2 g of helium gas for a certain process $A \rightarrow B$ is shown in the figure. What is the heat given to the gas during the process $A \rightarrow B$?

a) $4p_0V_0$

b) $6p_0V_0$

c) $4.5p_0V_0$

d) $2p_0V_0$

45. When a small amount of heat ΔQ is added to an enclosed gas, then increase in internal energy and external work done are related as

d) $\Delta Q = mC_p\Delta T + p\Delta V$

a) $mC_v\Delta T=Q+p\Delta V$ b) $\Delta Q=mC_v\Delta I$ P=046. For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal $c) -\gamma \frac{\Delta V}{V}$ d) $-\gamma^2 \frac{\Delta V}{V}$

47. A gas for which $\gamma = 1.5$ is suddenly compressed to the $\frac{1}{4}$ th of the initial volume. Then the ratio of the final to the initial pressure is

a) 1:6

b) 1:8

c) 1:4

d) 8:1

48. The volume of an ideal diatomic gas is doubled isothermally, the internal energy

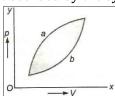
a) Is doubled

b) Is halved

c) Is increased four times

d) Remains unchanged

49. The work done in which of the following process is zero?

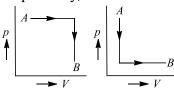

a) Isothermal process

b) Adiabatic process

c) Isochoric process

d) None of these

50. Figure shows two processes a and b for a given sample of a gas, if ΔQ_1 , ΔQ_2 are the amounts of heat absorbed by the system in the two cases, and ΔU_1 , ΔU_2 are changes in internal energies respectively, then


a) $\Delta Q_1 = \Delta Q_2$,; $\Delta U_1 = \Delta U_2$

b) $\Delta Q_1 > \Delta Q_2$; $\Delta U_1 > \Delta U_2$

c) $\Delta Q_1 < \Delta Q_2$; $\Delta U_1 < \Delta U_2$

d) $\Delta Q_1 > \Delta Q_2$; $\Delta U_1 = \Delta U_2$

51. In figure two indicator diagrams are shown. If the amounts of work done in the two cases are W_1 and W_2 respectively, then

a) $W_1 = W_2$

b) $W_1 > W_2$

c) $W_1 < W_2$

d) Cannot say

52. In adiabatic expansion

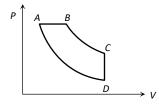
a) $\Delta U = 0$

b) ΔU = negative

c) $\Delta U = \text{positive}$

d) $\Delta W = \text{zero}$

53. We consider a thermodynamic system. If ΔU represents the increase in its internal energy and W the work done by the system, which of the following statements is true?

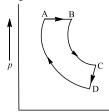

a) $\Delta U = -W$ in an adiabatic process

b) $\Delta U = W$ in an isothermal process

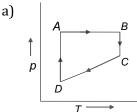
c) $\Delta U = -W$ in an isothermal process

d) $\Delta U = W$ in an adiabatic process

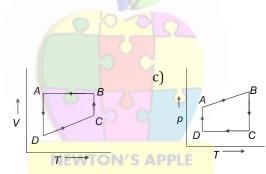
54. In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are

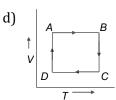

- a) BA, AD, DC
- b) DC, CB, BA
- c) AB, BC, CD
- d) CD, DA, AB
- The volume of air increases by 5%, in its adiabatic expansion. The percentage decrease in its pressure will 55.
 - a) 5%

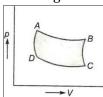
b) 6%


c) 7%

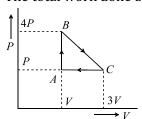
d) 8%


- 56. When a gas expands adiabatically
 - a) No energy is required for expansion
 - b) Energy is required and it comes from the wall of the container of the gas
 - c) Internal energy of the gas is used in doing work
 - d) Law of conservation of energy does not hold
- 57. A cyclic process *ABCDA* is shown below in the given *p-V* diagram. In the following answers the one that represents the same process as in p-V diagram





58. In the indicator diagram T_a , T_b , T_c , T_d represent temperature of gas at A, B, C, D respectively. Which of the following is correct relation?



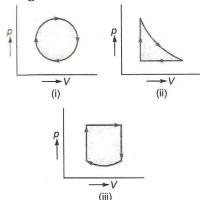
a) $T_a = T_b = T_c = T_d$

b) $T_a \neq T_b \neq T_c \neq T_d$

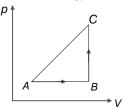
c) $T_a = T_b$ and $T_c = T_d$

- d) None of these
- 59. An ideal gas is taken around the cycle *ABCA* as shown in the P V diagram The total work done by the gas during the cycles is

a) PV


b) 2PV

c) 4PV

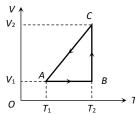

d) 3PV

- 60. The thermodynamic process in which no work is done on or by the gas is
 - a) Isothermal process
- b) Adiabatic process
- c) Cyclic process
- d) Isochoric process
- 61. An ideal gas is allowed to expand freely against a vacuum in a rigid insulated container. The gas undergoes
 - a) An increase in its internal energy
- b) A decrease in its internal energy
- c) Neither an increase nor a decrease in its
- d) A decrease in temperature

- temperature or internal energy
- 62. What is the nature of change in internal energy in the following three thermodynamical processes shown in figure?

- a) ΔU is positive in all the three cases
- b) ΔU is negative in all the three cases
- c) ΔU is positive for (i), negative for (ii), zero for (iii)
- d) $\Delta U = 0$, in all the cases
- 63. The p-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done by the system in going from $A \rightarrow B \rightarrow C$ is 30 J, and 40 J heat is given to the system. The change in internal energy between A and C is

NEWTON'S APPLI

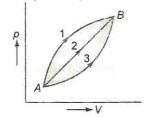

a) 10 J

b) 70 J

c) 84 J

d) 134 J

- 64. The slopes of isothermal and adiabatic curves are related as
 - a) Isothermal curve slope = adiabatic curve slope
 - b) Isothermal curve slope = $\gamma \times$ adiabatic curve slope
 - c) Adiabatic curve slope = $\gamma \times$ isothermal curve slope
 - d) Adiabatic curve slope = $1/2 \times isothermal$ curve slope
- 65. A cyclic process for 1 mole of an ideal gas is shown in figure in the *V-T*, diagram. The work done in *AB*, *BC* and *CA* respectively

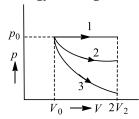

a) $0, RT_2 \ln \left(\frac{V_1}{V_2}\right), R(T_1 - T_2)$

b) $R(T_1 - T_2)$, 0, $RT_1 \ln \frac{V_1}{V_2}$

c) $0, RT_2 \ln \left(\frac{V_2}{V_1} \right), R(T_1 - T_2)$

d) $0, RT_2 \ln \left(\frac{V_2}{V_1} \right), R(T_2 - T_1)$

66. In figure a certain mass of gas traces three paths 1, 2, 3 from state A to state B. If work done by the gas along three paths are W_1 , W_2 , W_3 respectively, then



- a) $W_1 < W_2 < W_3$
- b) $W_1 = W_2 = W_3$ c) $W_1 > W_2 > W_3$
- d) Cannot say
- 67. The volume of an ideal gas is 1 litre and its pressure is equal to 72cm of mercury column. The volume of gas is made $900 cm^3$ by compressing it isothermally. The stress of the gas will be
 - a) 8 cm (mercury)
- b) 7 *cm* (mercury)
- c) 6 *cm* (mercury)
- d) 4 cm (mercury)
- 68. In a thermodynamic system working substance is ideal gas, its internal energy is in the form of
 - a) Kinetic energy only

b) Kinetic and potential energy

c) Potential energy

- d) None of these
- 69. Adiabatic modulus of elasticity of a gas is $2.1 \times 10^5 \,\mathrm{Nm^{-2}}$. What will be its isothermal modulus of elasticity? $\left(\frac{c_p}{c_v} = 1.4\right)$
 - a) $1.2 \times 10^5 \text{ Nm}^{-2}$
- b) $4 \times 10^5 \text{ Nm}^{-2}$ c) $1.5 \times 10^5 \text{ Nm}^{-2}$
- d) $1.8 \times 10^5 \text{ Nm}^{-2}$
- 70. The temperature of a hypothetical gas increases to $\sqrt{2}$ times when compressed adiabatically to half the volume. Its equation can be written as
 - a) $PV^{3/2} = \text{constant}$
- b) $PV^{5/2} = \text{constant}$ c) $PV^{7/3} = \text{constant}$ d) $PV^{4/3} = \text{constant}$
- 71. The isothermal bulk modulus of a perfect gas at normal pressure is
 - a) $1.013 \times 10^5 N/m^2$
- b) $1.013 \times 10^6 N/m^2$ c) $1.013 \times 10^{-11} N/m^2$ d) $1.013 \times 10^{11} N/m^2$
- 72. A gas is expanded from volume V_0 to $2V_0$ under three different processes, in figure process 1 is isobaric process, process 2 is isothermal and process 3 is adiabatic. Let ΔU_1 , ΔU_2 and ΔU_3 be the change in internal energy of the gas in these three processes. Then

- a) $\Delta U_1 > \Delta U_2 > \Delta U_3$

- b) $\Delta U_1 < \Delta U_2 < \Delta U_3$ c) $\Delta U_2 < \Delta U_1 > \Delta U_3$ d) $\Delta U_2 < \Delta U_3 < \Delta U_1$
- 73. A gas is suddenly compressed to ¼ th of its original volume at normal temperature. The increase in its temperature is ($\gamma = 1.5$)
 - a) 273 K
- b) 573 K
- c) 373 K
- d) 473 K

- 74. In a reversible isochoric change
 - a) $\Delta W = 0$
- b) $\Delta Q = 0$
- c) $\Delta T = 0$
- d) $\Delta U = 0$
- 75. Initial pressure and volume of a gas are *P* and *V* respectively. First it is expanded isothermally to volume 4V and then compressed adiabatically to volume V. The final pressure of gas will be (given $\gamma = 3/2$)
 - a) 1P

b) 2P

c) 4P

d) 8P

: HINTS AND SOLUTIONS :

1 **(b)**

In isothermal process, heat is released by the gas to maintain the constant temperature

2 **(a)**

For adiabatic process

$$P_1 V_1^{\gamma} = p_2 V_2$$

$$\frac{RT_1}{V_1}V_1^{\gamma} = \frac{RT_2}{V_2}V_2^{\gamma}$$

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$$

3 **(d)**

For adiabatic forces $\Delta W = -\Delta U \ [\because \Delta Q = 0]$ $\Rightarrow \Delta W = -(-50) = +50I$

4 (a)

As work done=0

$$\Delta U = mc\Delta T$$

$$= 100 \times 10^{-3} \times 4184 \times (50 - 30)$$

$$=84 \text{ kJ}$$

5 **(b)**

As is clear from figure,

Slope of curve 2 > Slope of curve 1

$$(\gamma p)_2 = (\gamma p)_1$$

$$\gamma_2 > \gamma_1$$

As
$$\gamma_{He} > \gamma O_2$$

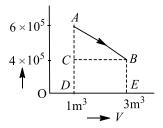
∴ adiabatic curve 2 corresponds to helium and adiabatic curve 1 corresponds to oxygen

6 **(a**

In isothermal change, temperature remains constant,

Hence $\Delta U = 0$

Also from $\Delta Q = \Delta U + \Delta W \Rightarrow \Delta Q = \Delta W$


7 (d

$$PV^{\gamma} = \text{constant} \Rightarrow P\left(\frac{RT}{P}\right)^{\gamma} = \text{constant}$$

8 **(b**)

As work done in process = area under the curve, which increases continuously

9 **(a)**

Work done by the system

- = area under p V diagram
- = area of rectangle BCDE + area of $\triangle ABC$

$$= 4 \times 10^5 \times 2 + \frac{2 \times 10^5 \times 2}{2}$$

$$W = 10 \times 10^5 \, \text{J}$$

10 **(d)**

Initial and final states are same an all the process

Hence, $\Delta U = 0$ in each case

By $p\Delta V = \Delta Q = \Delta W =$ Area enclosed by curve with volume axis

$$:$$
 $(Area)_1 < (Area)_2 < (Area)_3$

$$\Rightarrow Q_1 < Q_2 < Q_3$$

11 (c)

For cyclic process *p-V* curve is closed curve and area enclosed by closed path represent the work done.

12 **(b)**

NEWTON

For adiabatic expansion, we have the formula

$$pV^{\gamma} = \text{constant}$$
 ...(i)

Gas equation is,

$$pV=RT$$

$$\Rightarrow \qquad p = \frac{RT}{V} \qquad \dots(ii)$$

From Eqs. (i) and (ii), we obtain

$$\left(\frac{RT}{V}\right)V^{\gamma} = \text{constant}$$

$$\Rightarrow TV^{\gamma-1} = \text{constant}$$
 ...(iii)

But
$$T \propto \frac{1}{\sqrt{V}}$$
 (given)

as
$$TV^{1/2} = \text{constant}$$
 ...(iv)

Thus, using Eqs. (iii) and (iv) togther, we get

$$\gamma - 1 = \frac{1}{2}$$

or
$$\gamma = \frac{3}{2} = 1.5$$

$$\Rightarrow \frac{C_p}{C_v} = 1.5$$

13 **(b)**

From
$$p_2 V_2^{\gamma} = p_1 V_1^{\gamma}$$

 $p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 1 \left(\frac{V_1}{1/20V_1}\right)^{1.4}$
= 66.28 atm

14 (c)

 $\Delta W = P\Delta V$, here ΔV is negative so ΔW will be negative

15 (a)

> As gas is suddenly expanded so it is an adiabatic process,

ie,
$$pV^{\gamma} = constant$$

or
$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma}$$

Given,
$$V_2 = 3V_1$$
, $C_V = 2R$

$$\therefore C_P = 2R + R = 3R$$

$$\Rightarrow \quad \gamma = \frac{C_P}{C_V} = \frac{3R}{2R} = 1.5$$

$$\therefore \frac{P_1}{P_2} = \left(\frac{V_2}{V_1}\right)^{\gamma} = (3)^{1.5} = 5.1 \approx 5$$

16

In isothermal process temperature remains constant

17 (b)

> Velocity of sound in air increases (v_t) with increase in temperature $[v_t = v_0 + 0.61t]$ but is independent of pressure variation.

18 **(c)**

$$PV^{\gamma} = \text{constant}$$
: Differentiating both sides $P_{\gamma}V^{\gamma-1}dV + V^{\gamma}dP = 0 \Rightarrow \frac{dP}{P} = -\gamma \frac{dV}{V}$

19 **(d)**

In adiabatic operation (eg, bursing of tyre) $p_2^{(1-\gamma)}T_2^{\gamma} = p_1^{(1-\gamma)}T_1^{\gamma}$ $T_2 = T_1 \left(\frac{p_1}{n_-}\right)^{(1-\gamma)/\gamma}$ $=300\left(\frac{4}{1}\right)^{\left(\frac{1-7/3}{7/5}\right)}=300(4)^{-2/7}$

(a) 20

 $\Delta Q = \Delta U + \Delta W$ and $\Delta W = P \Delta V$

21 **(b)**

V. T. graph is a straight line passing through origin.

Hence, $V \propto T$ or P = constant

$$\Delta Q = nC_P \Delta T \text{ and } \Delta U = nC_V \Delta T$$

Also
$$\Delta W = \Delta Q - \Delta U = \mu (C_P - C_V) \Delta T$$

$$\therefore \frac{\Delta Q}{\Delta W} = \frac{nC_P \Delta T}{n(C_P - C_V)\Delta T} = \frac{C_P}{C_P - C_V} = \frac{1}{1 - \frac{c_V}{C_P}}$$

$$\frac{C_V}{C_P} = \frac{3}{5}$$
 for helium gas. Hence $\frac{\Delta Q}{\Delta W} = \frac{1}{1-3/5} = \frac{5}{2}$

22 **(b)**

For cyclic forces $\Delta U = 0$, So, $\Delta Q = \Delta W$

23

The change in internal energy does not depend upon path followed by the process. It only depends on initial and final states.

Hence, $\Delta U_1 = \Delta U_2$

24 (a)

The work done=area of p-Vgraph

=area of triangle ABC

$$= \frac{1}{2} \times 3p \times 2V = 3pV$$

25 (c)

For monoatomic gas,

$$C_{\nu} = \frac{3}{2}R = \frac{3}{2} \times 8.31 \text{ Jmol}^{-1}{}^{\circ}\text{C}^{-1}$$

$$Q = 500 \text{ J}, n = 40 = ?$$

$$\theta = \frac{Q}{nC_v} = \frac{500}{4 \times \frac{3}{2} \times 8.31} = 10^{\circ}\text{C}$$

26 (c)

> Area under curve III is minimum. Therefore, work done is minimum

27

$$T_2 = 0$$
°C = 273 K, $T_1 = 17$ °C = 17 + 273 = 290 K

$$COP = \frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}$$

$$\frac{80 \times 1000 \times 4.2}{W} = \frac{273}{290 - 273} = \frac{273}{17}$$

$$W = \frac{80 \times 1000 \times 4.2 \times 17}{273} \text{ J}$$

$$W = \frac{33.6 \times 17 \times 10^4}{273 \times 3.6 \times 10^5} \text{ kWh} = 0.058 \text{ kWh}$$

$$W = \frac{80 \times 1000 \times 4.2 \times 17}{273}$$

$$W = \frac{33.6 \times 17 \times 10^4}{273 \times 3.6 \times 10^5} \text{ kWh} = 0.058 \text{ kWh}$$

28 (c)

> From the given VT diagram In process $AB, V \propto T \Rightarrow$ Pressure is constant (As quantity of the gas remains same)

In process BC, V = Constant and in process CA, T = constant

∴ These processes are correctly represented on *PV* diagram by graph (c)

29 (d)

In an ideal gas, the internal energy depends only upon the temperature of the gas. When an ideal gas undergoes an isothermal change, there is no change in its internal energy ($\Delta U = 0$)

From first law of thermodynamics

$$\Delta U = Q - W$$

For isothermal change $\Delta U = 0$

$$\therefore$$
 $Q = W$

Hence, in an isothermal process in an ideal gas the heat absorbed by the gas is entirely used in the work done by the gas.

$$\Delta Q = \Delta U + \Delta W \Rightarrow \Delta W = (\Delta Q)_P - \Delta U$$
$$= (\Delta Q)_P \left[1 - \frac{(\Delta Q)_V}{(\Delta Q)_P} \right]$$

$$= (\Delta Q)_P \left[1 - \frac{C_V}{C_P} \right] = Q \left[1 - \frac{3}{5} \right] = \frac{2}{5} Q$$

 $\therefore (\Delta Q)_P = Q$ and $\gamma = \frac{5}{3}$ for monoatomic gas

31 **(a)**

Since PV = RT and T = constant

 $\therefore PV = \text{constant}$

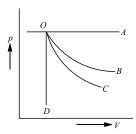
32 **(d)**

$$dW = dQ - dU$$
= $C_2(T_2 - T_1) - C_v[T_2 - T_1]$
= $R[T_2 - T_1]$
= $8.31 \times 100 = 8.31 \times 10^2$ [

33 **(d)**

During adiabatic expansion

$$TV^{\gamma-1} = \text{constant of } T_2V_2^{\gamma-1} = T_1V_1^{\gamma-1}$$


$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma - \frac{\gamma}{2}}$$

For monoatomic gas, $\gamma = 5/3$

$$\frac{T_1}{T_2} = \left(\frac{AL_2}{AL_1}\right)^{5/3 - 1} = \left(\frac{L_2}{L_1}\right)^{2/3}$$

$$\frac{Q_1}{Q_2} = \frac{C_V dT}{p dT} = \frac{\frac{3}{2}R}{R} = \frac{3}{2}$$
 that is 60: 40.

$$J\Delta Q = \Delta U + \Delta W, \Delta U = J\Delta Q - \Delta W$$

 $\Delta U = 4.18 \times 300 - 600 = 654 joule$

- (i) Curve *OA* represents isobaric process (since pressure is constant). Since, the slope of adiabatic process is more steeper than isothermal process.
- (ii)Curve *OB* represents isothermal process.
- (iii) Curve OC represents adiabatic process.
- (iv)Curve *OD* represents isochoric process.

(since volume is constant).

37 **(c)**

$$W_{AB} = -p_0 V_0$$

$$W_{BC}=0$$

$$W_{CD} = 4 p_0 V_0$$

$$W_{ABCD} = W_{AB} + W_{BC} + W_{CD}$$

$$= -p_0V_0 + 0 + 4p_0V_0 = 3p_0V_0$$

38 **(b)**

In adiabatic expansion of a gas system, gas expands, so temperature of the system decreases.

39 (a)

Figure shows that loop 1 is anticlockwise, therefore W_1 is negative, loop 2 is clockwise, therefore W_2 is positive.

Also, loop 2 is bigger

$$W_2 > W_1$$

Hence, $W = -W_1 + W_2 \rightarrow \text{positive}$

40 (d)

Adiabatic Bulk modulus $E_{\phi} = \gamma P$

41 (a

$$\begin{split} \Delta Q &= \Delta U + \Delta W \Rightarrow \frac{\Delta W}{\Delta Q} = 1 - \frac{\Delta U}{\Delta Q} = 1 - \frac{\mu C_V dT}{\mu C_P dT} \\ \Rightarrow \frac{\Delta W}{\Delta Q} &= 1 - \frac{C_V}{C_P} = 1 - \frac{3}{5} = \frac{2}{5} = 0.4 \end{split}$$

42 **(a**

Let the process start from initial pressure P_A , volume V_A and temperature T_A

$$A(P_A, V_A, T_A)$$

$$B\left(\frac{P_A}{2}, 2V_A, T_A\right)$$

$$C\left(\frac{P_A}{2}, V_A, \frac{T_A}{2}\right)$$

(i) Isothermal expansion (PV = constant) at temperature T_A to twice the initial volume V_A

(ii) Compression at constant pressure $\frac{P_A}{2}$ to original volume $V_A(i.e.V \propto T)$

(iii) Isochoric process (at volume V_A) to initial condition ($i.e.P \propto T$)

At constant volume $P \propto T \Rightarrow \frac{P_1}{P_2} = \frac{T_1}{T_2} \Rightarrow \frac{P_1}{P_2} = \frac{300}{400} =$

3

44 **(b)**

Change in internal energy from A to B is

$$\Delta U = \frac{f}{2} nR \Delta T = \frac{f}{2} (p_f V_f - p_i V_i)$$
$$= \frac{3}{2} (2p_0 \times 2V_0 - p_0 \times V_0) = \frac{9}{2} p_0 V_0$$

Work done in process *A* to *B* is equal to the area covered by the graph with volume axis, *ie*,

$$W_{A\to B} = \frac{1}{2}(p_0 + 2p_0) \times (2V_0 - V_0) = \frac{3}{2}p_0V_0$$

Hence.

$$\Delta Q = \Delta U + \Delta W$$

$$= \frac{9}{2}p_0V_0 + \frac{3}{2}p_0V_0 = 6p_0V_0$$

$$\Delta Q = \Delta U + \Delta W = mC_{\nu}(\Delta T) + p(\Delta V)$$

46 **(b)**

Differentiate PV = constant w.r.t.V

$$\Rightarrow P\Delta V + V\Delta P = 0 \Rightarrow \frac{\Delta P}{P} = -\frac{\Delta V}{V}$$

47 **(d)**

Here, $\gamma = 1.5$, $V_2 = \frac{1}{4}V_1$; $\frac{p_2}{p_1} = ?$

As compression is sudden/adiabatic,

$$\therefore p_2 V_2^{\gamma} = p_1 V_1^{\gamma}$$

$$\frac{p_2}{p_1} = \left(\frac{V_1}{V_2}\right)^{\gamma} = (4)^{1.5} = 8$$

48 **(d)**

No change in the internal energy of ideal gas, but for real gas internal energy increases because work is done against intermolecular forces.

49 (c

Isochoric process takes place at constant volume.

Since, there is no change of volume ($\Delta V = 0$) therefore

$$W = p \Delta V = 0$$

50 **(d)**

As initial and final states in the two processes are same. Therefore, $\Delta U_1 = \Delta U_2$. As area under curve a > area under curve b, therefore, $\Delta W_1 > \Delta W_2$

$$As \Delta Q = \Delta U + \Delta W$$

$$\therefore \Delta Q_1 > \Delta Q_2$$

51 **(b)**

As work done = area under the p - V diagram $W_1 > W_2$

52 **(b)**

In case of adiabatic expansion $\Delta W = \text{positive}$ and $\Delta Q = 0$

From FLOT $\Delta Q = \Delta U + \Delta W \Rightarrow \Delta U = -\Delta W$, *i.e.*, ΔU will be negative

53 **(**a

An isothermal process is a constant temperature process. In this process, $T = \text{constant or } \Delta T = 0$.

$$\Delta U = nC_V \Delta T = 0$$

An adiabatic process is defined as one with no heat transfer into or out of a system. Therefore, $\Delta Q = 0$. From the first law of thermodynamics.

$$W = -\Delta U$$

or (d)

54

$$\Delta U = -W$$

Process *CD* is isochoric as volume is constant, process *DA* is isothermal as temperature constant and process *AB* is isobaric as pressure is constant

55 **(c)** $PV^{\gamma} = K \text{ or } P\gamma V^{\gamma-1} dV + dP.V^{\gamma} = 0$ $\Rightarrow \frac{dP}{P} = -\gamma \frac{dV}{V} \text{ or } \frac{dP}{P} \times 100 = -\gamma \left(\frac{dV}{V} \times 100\right)$ $= -1.4 \times 5 = 7\%$

56 **(c)**

$$\Delta Q = \Delta U + \Delta W = 0 \Rightarrow \Delta W = -\Delta U$$

If ΔW is positive *i.e.*, gas does work then ΔU should be negative meaning internal energy is used in doing work

57 **(a)**

In p-V diagrams process AB is isobaric process in which pressure remains constant ie, p=constant at all temperatures.

Process *BC* is isothermal process in which, temperature remains constant *ie, T*=constant.

Process *CD* is isochoric process in which volume remains constant *ie*, *p-T* diagram *CD* is a straight line passing through origin.

Process *AD* is adiabatice process which corresponds to process *AD* in *p-T* diagram.

Hence, the correct p-Tdiagram is shown in option (a).

58 **(c)**

AB and CD are isothermal curves therefore $T_a = T_b$ and $T_c = T_d$ but all the four temperatures are not equal

59 **(d)**

$$W = \frac{1}{2}2V.3P = 3PV$$

60 **(d)**

In case of no work done W=0 than volume expersion V=0. So, the volume remains zero V=0. This process is called isochoric process.

61 **(c**)

For vacuum, pressure p=0

Hence, work done = $p\Delta V = 0$

According to first law of thermodynamics

$$Q = \Delta U + p\Delta V$$

 \therefore $Q = \Delta$

Hence the gas undergoes neither an increase nor a decrease in its temperature or internal energy.

62 **(d)**

As indicator diagram if all the three cases are closed curves, representing cyclic changes, therefore, U = const and $\Delta U = 0$ in all the cases

63 **(a**

Since, work is done by the system, so it is positive. Therefore,

$$\Delta W = 30$$
J

Heat given to the system,

$$\Delta Q = 40$$
J

According to first law of thermodynamics, change in internal energy is given by

$$\Delta U = \Delta Q - \Delta W$$

$$= 43 - 30 = 10 \text{ J}$$

64 **(c)**

For Isothermal process PV = constant $\Rightarrow \left(\frac{dP}{dV}\right) = \frac{-P}{V} = \text{Slope of Isothermal curve}$ For adiabatic $PV^{\gamma} = \text{constant}$

For adiabatic $PV^{\gamma} = \text{constant}$

$$\Rightarrow \frac{dP}{dV} = \frac{-\gamma P}{V} = \text{Slope of adiabatic curve}$$

Clearly,
$$\left(\frac{dP}{dV}\right)_{\text{adibatic}} = \gamma \left(\frac{dP}{dV}\right)_{\text{Isothermal}}$$

65 **(c)**

Process AB is isochoric, $W_{AB} = P \Delta V = 0$ Process BC is isothermal $W_{BC} = RT_2 \cdot \ln \left(\frac{V_2}{V_1}\right)$

Process *CA* is isobaric

$$\therefore W_{CA} = P\Delta V = R\Delta T = R(T_1 - T_2)$$

[Negative sign is taken because of compression]

66 **(c)**

As work done by the gas = area under the p-V curve, therefore $W_1>W_2>W_3$

67 **(a**)

For isothermal process $P_1V_1 = P_2V_2$

$$\Rightarrow P_2 = \frac{P_1 V_1}{V_2} = \frac{72 \times 1000}{900} = 80 \ cm$$

Stress $\Delta P = P_2 - P_1 = 80 - 72 = 8cm$

68 **(a**)

Ideal gas possess only kinetic energy

69 **(c**)

$$\frac{E_s}{E_T} = \gamma = \frac{C_P}{C_V} = 1.4$$

$$\frac{2.1 \times 10^5}{E_T} = 1.4$$

or
$$E_T = \frac{2.1 \times 10^5}{1.4}$$

$$= 1.5 \times 10^5 \text{ Nm}^{-2}$$

70 **(a)**

 $\frac{TV^{\gamma-1}}{}$ = constant

$$\therefore \frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma - 1} \text{ or } \left(\frac{1}{2}\right)^{\gamma - 1} = \sqrt{\frac{1}{2}}$$

$$\therefore \gamma - 1 = \frac{1}{2}$$
 or $\gamma = \frac{3}{2} \therefore PV^{3/2} = \text{constant}$

71 (a)

$$E_\theta = P = 1.013 \times 10^5 N/m^2$$

72 **(a)**

Process 1 is isobaric (p = constant) expansion Hence, temperature of gas will increase

 $\Delta U_1 = \text{negative}$

Process 2 is an adiabatic expansion

 $\Delta U_2 = 0$

Process 3 is an adiabatic expansion

Hence, temperature of gas will fall

- $\Delta U_3 = \text{constant}$
- $\Delta U_1 > \Delta U_2 > \Delta U_3$
- 73 **(a**)

For adiabatic process

$$TV^{\gamma-1} = \text{constant}$$

$$\therefore T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$$

$$\Rightarrow \qquad \frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\gamma - 1}$$

Given ,
$$V_1=V$$
 , $V_2=\frac{V}{4}$, $\gamma=1.5$

$$\Rightarrow$$
 $T_2 = 2T_1$

The change in temperature is given by

$$T_2 - T_1 = 2T_1 - T_1 \Rightarrow T_1 = 273 \text{ K}$$

$$\Delta V = 0 \Rightarrow P\Delta V = 0 \Rightarrow \Delta W = 0$$

In isothermal process $P_1V_1 = P_2V_2$

$$\Rightarrow PV = P_2 \times 4V :: P_2 = \frac{P}{4}$$

In adiabatic process

$$P_2 V_2^{\gamma} = P_3 V_3^{\gamma} \Rightarrow \frac{P}{4} \times (4V)^{1.5} = P_3 V^{1.5} \Rightarrow P_3 = 2P$$

Kinetic Theory of Gases

1.	An ideal gas ($\gamma = 1.5$)	is expanded adiabaticall	y. How many times has tl	ne gas to be expanded to
	reduce the root mean	square velocity of molec	ules 2.0 times?	
	a) 4 times	b) 16 times	c) 8 times	d) 2 times
2.	If number of molecule and that of oxygen at 3		hat of O_2 , then ratio of kinds	netic energy of hydrogen
	a) 1:1	b) 1 : 2	c) 2 : 1	d) 1 : 16
3.	The absolute tempera	ture of a gas is determine	ed by	
	_	_	b) The velocity of sour	nd in the gas
	c) The number of mole			elocity of the molecules
4.	If the rms velocity of a		C ·	·
	a) $v^2T = \text{constant}$		b) v^2/T = constant	
	c) $vT^2 = \text{constant}$		d) v is independent of	T
5.		radius $'r'$ rises from the	•	a lake, its radius becomes
			<mark>to the 10 <i>m</i> height of wat</mark>	-
	temperature is consta	nt and th <mark>e surface tensio</mark>	<mark>n is neglect</mark> ed, the depth	
	a) 3.53 <i>m</i>	b) 6.53 <i>m</i>	c) 9.53 m	d) 12.53 <i>m</i>
6.	Two gases A and B have	ving same pressure $\it p$, vo	lume V and absolute tem	perature T are mixed. If
	the mixture has the vo	lume and temperature a	s V and T respectively, th	en the pressure of the
	mixture is			
	a) 2 <i>p</i>	b) <i>p</i>	c) $\frac{p}{2}$	d) 4p
7.	In the relation $n = \frac{PV}{RT}$	n =	Z	
	a) Number of molecule	es b) Atomic number	c) Mass number	d) Number of moles
8.	Pressure versus tempe	erature graph of an ideal	gas at constant volume V	of an ideal gas is shown
	by the straight line A .	Now mass of the gas is d	oubled and the volume is	halved, then the
	corresponding pressu	re versus temperature gi	raph will be shown by the	e line
	$P \cap B$ $A \cap C$ T			
	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) None of these
9.	10 moles of an ideal m	onoatomic gas at 10°C is	s mixed with 20 moles of	another monoatomic gas

c) 16°C

d) 16.6°C

at 20°C. Then the temperature of the mixture is

b) 15°C

a) 15.5°C

10.	If C_p and C_v denote the volume respectively, th		en per unit mass at consta	nt pressure and constant
	a) $C_p - C_v = R/28$	b) $C_p - C_v = R/14$	c) $C_p - C_v = R$	$d) C_p - C_v = 28R$
11.	The figure shows the vo	olume V versus tempera	ature T graphs for a certain rence can you draw from	n mass of a perfect gas a
	$V \downarrow \rho_2 \downarrow \rho_1 \downarrow \rho_2 \uparrow \rho_1 \uparrow \rho_2 \uparrow \rho_1 \uparrow \rho_2 \downarrow \rho_2 \uparrow \rho_2 \uparrow \rho_2 \uparrow \rho_2 \downarrow \rho_2 \uparrow \rho_2 \uparrow \rho_2 \downarrow \rho_2 \uparrow \rho_2 \downarrow \rho_2 \uparrow \rho_2 \downarrow \rho_$			
	a) $P_1 > P_2$		b) $P_1 < P_2$	
	c) $P_1 = P_2$		d) No interference can insufficient informat	
12.	The pressure is exerted	l by the gas on the walls	of the container because	
	a) It loses kinetic energ	у	b) It sticks with the wa	lls
	c) On collision with the momentum	walls there is a change	in d) It is accelerated towa	ards the walls
13.	If the degree of freedom	n of a gas are f , then the	e ratio of two specific heat	es C_P/C_V is given by
	a) $\frac{2}{f} + 1$	b) $1 - \frac{2}{f}$	c) $1 + \frac{1}{f}$	d) $1 - \frac{1}{f}$
14.	The ratio of root mean	square velocity of 0 ₃ ar	n <mark>d O₂ is</mark>	
	a) 1:1	b) 2: 3	c) 3: 2	d) $\sqrt{2}:\sqrt{3}$

15. 1 mol of gas occupies a volume of 200 mL at 100 mm pressure. What is the volume occupied by two moles of gas at 400 mm pressure and at same temperature?

a) 50 mL

b) 100 mL

d) 400 mL

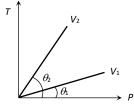
16. Molecules of a gas behave like

a) Inelastic rigid sphere

b) Perfectly elastic non-rigid sphere

c) Perfectly elastic rigid sphere

NEWTOW'S Ad) Inelastic non-rigid sphere


17. For an ideal gas of diatomic molecules

a)
$$C_p = \frac{5}{2}R$$

b)
$$C_v = \frac{3}{2}R$$

c)
$$C_p - C_v = 2R$$
 d) $C_p = \frac{7}{2}R$

18. From the following P - T graph what inference can be drawn

b) $V_2 < V_1$

c) $V_2 = V_1$

d) None of the above

19. The root mean square speed of the molecules of a diatomic gas is *v*. When the temperature is doubled, the molecules dissociate into two atoms. The new root mean square speed of the atom is

b) v

c) 2v

20. At what temperature, the mean kinetic energy of O_2 will be the same for H_2 molecules at -73° C

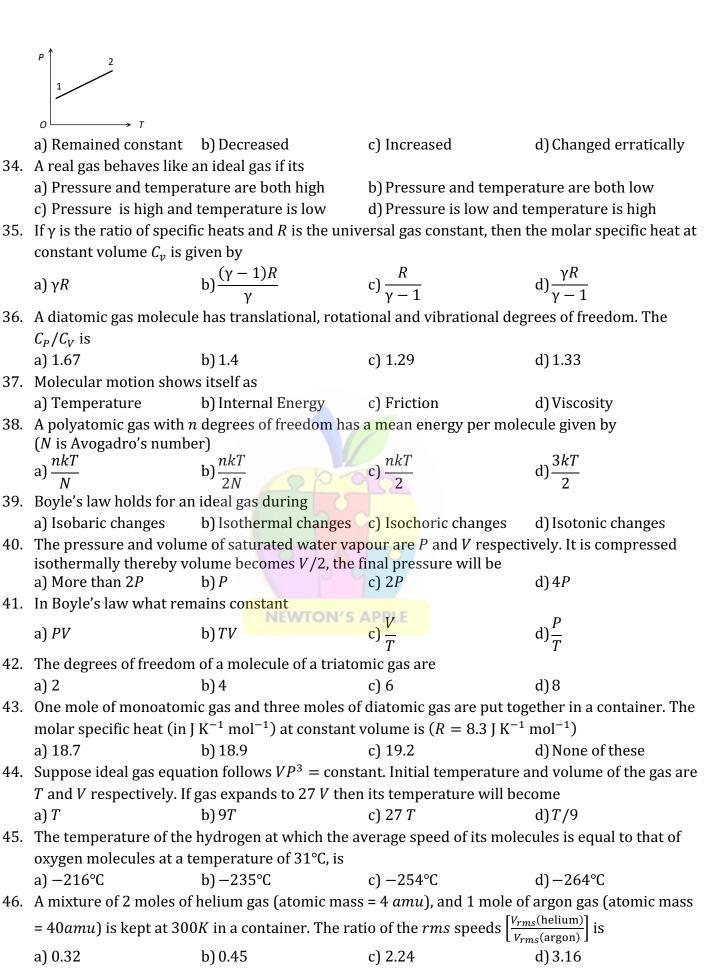
a) 127°C

b) 527°C

c) -73°C

d) -173°C

21. The relation between the gas pressure P and average kinetic energy per unit volume E is


a) $P = \frac{1}{2}E$

b) P = E

c) $P = \frac{3}{2}E$

 $d) P = \frac{2}{3} E$

22.	For hydrogen gas C_P – given by	$C_V = a$ and for oxygen ga	as $C_P - C_V = b$. So the rel	ation between a and b is
	a) $a = 16b$	b) $b = 16a$	c) $a = 4b$	d) a = b
23.	For a gas at a temperat	ture T the root-mean-squ	are velocity \emph{v}_{rms} , the mo	st probable speed v_{mp} ,
	and the average speed	v_{av} obey the relationship		
	a) $v_{av} > v_{rms} > v_{mp}$	b) $v_{rms} > v_{av} > v_{mp}$	c) $v_{mp} > v_{av} > v_{rms}$	$d) v_{mp} > v_{rms} > v_{av}$
24.	The ratio of the molar h	heat capacities of a diator	nic gas at constant press	ure to that at constant
	volume is			
	a) $\frac{7}{2}$	b) $\frac{3}{2}$	c) $\frac{3}{5}$	d) $\frac{7}{5}$
25	L	2	5	5
25.	A monoatomic gas mol		h) Foundament of free	J
	a) Three degrees of free		b) Four degrees of freed	
26	c) Five degrees of freed		d) Six degrees of freedo	
26.		ensity for hydrogen and o	exygen is $\frac{1}{16}$, then under c	onstant pressure the
	ratio of their <i>rms</i> veloc	4	1	17
	a) $\frac{4}{1}$	b) $\frac{1}{4}$	c) $\frac{1}{16}$	d) $\frac{16}{1}$
27.	1	n and 3m of an ideal gas	10	1 a vessel of constant
_,.		and absolute temperatu	•	
		ratio of slop <mark>es of curves <i>E</i></mark>		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	a) 3:1	b) 1 : 3 NEWTON'S	c) 9 : 1	d)1:9
28.	The temperature of a g	as is -68 <mark>°C. At what temp</mark>	erature will the average	kinetic energy of its
	molecules be twice that			
	a) 137°C	b) 127°C	c) 100°C	d) 105°C
29.		ic energy of gas molecule		
	a) $\frac{3}{2}RT$	b) $\frac{2}{3}RT$	c) $\frac{1}{2}RT$	d) $\frac{2}{3}KT$
30.	average kinetic energy	ergy of hydrogen moleculor of oxygen molecules will	be	
21	a) E/4	b) $E/16$	c) <i>E</i>	d) 4 <i>E</i>
31.	O_2 gas is filled in a vess times its density will be	sel. If pressure is doubled	, temperature becomes i	our umes, now many
	a) 2	b) 4	1	1
	a) 2	U) T	c) $\frac{1}{4}$	d) $\frac{1}{2}$
32.	At 0 <i>K</i> which of the foll	owing properties of a gas	s will be zero	_
	a) Kinetic energy	b) Potential energy	c) Vibrational energy	d) Density
33.		temperature T diagram value T diagram value T		

47. If the internal energy of n_1 moles of He at temperature 10 T is equal to the internal energy of n_2 mole of hydrogen at temperature 6 T. the ratio of $\frac{n_1}{n_2}$ is

	a) $\frac{3}{5}$	b) 2	c) 1	d) $\frac{5}{3}$	
48.	In kinetic theory of gases, which of the following statements regarding elastic collisions of the molecules is wrong a) Kinetic energy is lost in collisions b) Kinetic energy remains constant in collision c) Momentum is conserved in collision d) Pressure of the gas remains constant in collisions				
49.	The ratio of the vapor de velocities of their molecu		given temperature is 9:	8. The ratio of the rms	
	a) 3: $2\sqrt{2}$	b) 2√2: 3	c) 9:8	d) 8: 9	
50.	On any planet, the present molecules and $V_e = \operatorname{escap}$	pe velocity)		uare velocity of	
	a) $C_{rms} \ll V_e$	b) $C_{rms} > V_e$	c) $C_{rms} = V_e$	$d) C_{rms} = 0$	
51.	r.m.s. velocity of nitroge	en molecules at NTP is			
	•	b) 517 <i>m/s</i>	c) 546 <i>m/s</i>	d) 33 <i>m/s</i>	
52.	From the following $V - T$	diagram we can conclu	ude		
	V P_1 T_1 T_2 T				
		b) $P_1 > P_2$	$(c) P_1 < P_2$	d) None of these	
53.	In Vander Waal's equation	on a and b represent (P)	$+\frac{a}{V^2}(V-b) = RT$		
	 a) Both a and b represent correction in volume b) Both a and b represent adhesive force between molecules c) a represents adhesive force between molecules and b correction in volume d) a represents correction in volume and b represents adhesive force between molecules 				
54.	At the same temperature is constant				
	a) Total number of molec		b) Average kinetic energ	gy	
	c) Root mean square velo		d) Mean free path		
55	A closed vessel is maintained at a constant temperature. It is first evacuated and then vapour is				
	injected into it continuously. The pressure of the vapour in the vessel				
	a) Increases continuously		b) First increases and th	ien remains constant	
	c) First increases and the		d) None of the above		
56.	The figure below shows	the plot of $\frac{pv}{nT}$ versus p fo	r oxygen gas at two diffe	rent temperatures.	
	$\frac{p^{V}}{nT} (J \operatorname{mol}^{-1} K^{-1})$	T ² /T ₁			

p **-**

Read the following statements concerning the above curves.

- I. The dotted line corresponds to the ideal gas behavior
- II. $T_1 > T_2$
- III. The value of $\frac{pV}{nT}$ at the point where the curves meet on the *y*-axis is the same for all gases.
- a) (i) only
- b) (i) and (ii) only
- c) All of these
- d) None of these
- 57. If one mole of a monoatomic gas $\left(\gamma = \frac{5}{3}\right)$ is mixed with one mole of a diatomic gas $\left(\gamma = \frac{7}{5}\right)$, the value of γ for the mixture is
 - a) 1.40

b) 1.50

c) 1.53

- d) 3.07
- 58. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature *T*. Neglecting all vibrational moles, the total internal energy of the system is
 - a) 4 RT

- b) 15 RT
- c) 9 RT

d) 11 RT

: HINTS AND SOLUTIONS :

1 **(b**)

$$v_{\rm rms} = \sqrt{\frac{_{\rm 3RT}}{_{\rm M}}}$$
 or $v_{\rm rms} \propto \sqrt{T}$

 $v_{\rm rms}$ is to reduce two times, *ie*, the temperature of the gas will have to reduce force times or

$$\frac{T'}{T} = \frac{1}{4}$$

During adiabatic process,

$$TV^{\gamma-1} = T'V'^{\gamma-1}$$

or
$$\frac{V'}{V} = \left(\frac{T}{T'}\right)^{\frac{1}{\gamma - 1}}$$

= $(4)^{\frac{1}{1.5 - 1}} = 4^2 = 16$
 $\therefore V' = 16 V$

2 **(a)**

K.E. is function of temperature. So $\frac{E_{H_2}}{E_{O_2}} = \frac{1}{1}$

3 **(d)**

Since $v_{rms} \propto \sqrt{T}$. Also mean square velocity $\overline{v^2} = v_{rms}^2$

4 **(b**)

RMS velocity is given by

$$v = \sqrt{\frac{3kT}{m}}$$
 or $v^2 = \frac{3kT}{m}$

For a gas, k and m are constants.

$$\therefore \frac{v^2}{T} = \text{constant}$$

5 **(c)**

According to Boyle's law

 $(P_1V_1)_{\text{At top of the lake}} = (P_2V_2)_{\text{At the bottom of the lake}}$

$$\Rightarrow P_1 V_1 = (P_1 + h) V_2 \Rightarrow 10 \times \frac{4}{3} \pi \left(\frac{5r}{4}\right)^3$$
$$\Rightarrow (10 + h) \times \frac{4}{3} \pi r^3 \Rightarrow h = \frac{610}{64} = 9.53m$$

6 **(a)**

The total pressure exerted by a mixture of non-reacting gases occupying a vessel is equal to the sum of the individual pressure which each gas exert if it alone occupied the same volume at a given temperature.

For two gases,

$$p = p_1 + p_2 = p + p = 2p$$

7 **(d)**

8 **(b)**

$$P = \frac{\mu RT}{V} = \frac{mRT}{MV} \quad \left(\mu = \frac{m}{M}\right)$$

So, at constant volume pressure-versus temperature graph is a straight line passing through origin with slope $\frac{mR}{MV}$. As the mass is doubled and volume is halved slope becomes four times. Therefore, pressure versus temperature graph will be shown by the line B

9 **(d)**

$$n_1 C_v \Delta T_1 = n_2 C_v \Delta T_2$$

 $10 \times (T - 10) = 20(20 - T)$
 $T - 10 = 40 - 2T$
 $3T = 50 \Rightarrow T = 16.6$ °C

10 **(a)**

Mayer Formula

11 **(a)**

12 **(c)**

Pressure, $P = \frac{F}{A} = \frac{1}{A} \cdot \frac{\Delta p}{\Delta t}$ [Δp = change in momentum]

13 **(a)**

$$\frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f}$$

14 (d)

Root mean square velocity of gas molecules

$$v_{\rm rms} = \sqrt{\frac{3RT}{M}}$$
 or
$$v_{\rm rms} \propto \frac{1}{\sqrt{M}}$$
 or
$$\frac{v_{\rm O_3}}{v_{\rm O_2}} = \sqrt{\frac{M_{\rm O_2}}{M_{\rm O_3}}}$$

Here, $M_{0_2} = 32$, $M_{0_3} = 48$

$$\therefore \frac{v_{0_3}}{v_{0_2}} = \sqrt{\frac{32}{48}} = \frac{\sqrt{2}}{\sqrt{3}}$$

15 **(b**)

Given, $p_1 = 100$ mm, $V_1 = 200$ mL and $p_2 = 400$ mm From Boyle' Law

$$p_1V_1 = p_2V_2$$

$$V_2 = \frac{p_1V_1}{p_2}$$

$$= \frac{100 \times 200}{400}$$

$$V_2 = 50 \text{ mL}$$

Volume of 2 mol gas= $2 \times 50 = 100 \text{ mL}$

16 (c)

Molecules of ideal gas behaves like perfectly elastic rigid sphere

17 **(d)**

$$C_P = \left(\frac{f}{2} + 1\right)R = \left(\frac{5}{2} + 1\right)R = \frac{7}{2}R$$

18 **(a**

As $\theta_2 > \theta_1 \Rightarrow \tan \theta_2 > \tan \theta_1 \Rightarrow \left(\frac{T}{P}\right)_2 > \left(\frac{T}{P}\right)_1$

Also from $PV = \mu RT$; $\frac{T}{P} \propto V \Rightarrow V_2 > V_1$

19 **(c)**

 $v_{rms} = \sqrt{\frac{3RT}{M}}$. According to problem T will become 2T and M will becomes M/2 so the value of v_{rms}

will increase by $\sqrt{4} = 2$ times, *i. e.*, new root mean square velocity will be 2v

20 (c

Mean kinetic energy of molecule depends upon temperature only. For O_2 it is same as that of H_2 at the same temperature of -73°C

21 (d

$$P = \frac{2}{3}E$$

22 **(d**)

 $C_P - C_V = R$ and R is constant for all gases

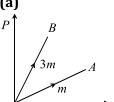
23 **(b**)

$$v_{rms} > v_{av} > v_{mp}$$

24 **(d**)

$$C_V = \frac{5}{2}R$$
 and $C_p = \frac{7}{2}R$

$$\gamma = \frac{C_p}{C_V} = \frac{7}{5}$$


25 **(a**)

A monoatomic gas molecule has only three translational degrees of freedom

26 **(a)**

$$v_{rms} = \sqrt{\frac{3p}{\rho}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{\rho_2}{\rho_1}} = \sqrt{\frac{16}{1}} = \frac{4}{1}$$

27 **(a**)

For a gas, $PV = \mu RT = \frac{m}{M}RT$

For graph A, $PV = \frac{m}{M}RT$

Slope of graph A,

$$\left(\frac{P}{T}\right) = \frac{m}{M} \frac{R}{V}$$
 ...(i)

For graph B, $PV = \frac{3m}{M}RT$

Slope of graph B,

$$\left(\frac{P}{T}\right) = \frac{3m}{M} \frac{R}{V} \dots (ii)$$

$$\frac{\text{Slope of curve } B}{\text{Slope of curve } A} = \frac{\frac{3m}{M} \frac{R}{V}}{\frac{m}{M} \frac{R}{V}} = \frac{3}{1}$$

28 **(a)**

Average kinetic theory of one molecule is

$$E = \frac{3}{2}kT$$

where k is Boltzmann constant and T the absolute temperature.

Given,
$$T_1 = -68^{\circ}\text{C} = 273 - 68 = 205 \text{ K},$$

$$E_1 = E$$
, $E_2 = 2E$

$$\therefore \qquad \frac{E_1}{E_2} = \frac{T_1}{T_2}$$

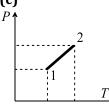
$$\begin{array}{ccc}
E_1 & E_7 & E_2 & \\
& \frac{E_1}{E_2} = \frac{T_1}{T_2} \\
\Rightarrow & T_2 = \frac{T_1 E_2}{E_1}
\end{array}$$

$$T_2 = \frac{205 \times 2E}{E} = 410 \text{ K}$$

Kinetic energy for 1 mole gas $E = \frac{f}{2}RT$

$$\Rightarrow E_{\text{Translation}} = \frac{3}{2}RT$$

[: For all gases translational degree of freedom f = 3]


$$E \propto T$$

$$PV = \mu RT \Rightarrow P\left(\frac{m}{\rho}\right) = \mu RT \Rightarrow \rho \propto \frac{P}{T}$$

Since T becomes four times and P becomes twice so ρ becomes $\frac{1}{2}$ times

At
$$T = 0K$$
, $v_{rms} = 0$

33

$$PV = \mu RT$$

$$\Rightarrow V \propto \frac{T}{P} \ (\because \mu \text{ and } R \text{ are fixed})$$

Since, *T* increases rapidly and *P* increases slowly thus volume of the gas increases

34 (d)

35 (c)

From the Mayer's formula

$$C_p - C_V = R \qquad \qquad \dots (i)$$

and
$$\gamma = \frac{c_p}{c_V}$$

$$\Rightarrow \qquad \gamma C_V = C_p \qquad \qquad ...(ii)$$

Substituting Eq. (ii) in Eq. (i) we get

$$\Rightarrow \qquad \gamma C_V - C_V = R$$

$$C_V(\gamma-1)=R$$

$$C_V = \frac{R}{\gamma - 1}$$

Degree of freedom f = 3 (Translatory)+2(rotatory)+1(vibratory) = 6

$$\Rightarrow \frac{C_P}{C_V} = \gamma = 1 + \frac{2}{f} = 1 + \frac{2}{6} = \frac{4}{3} = 1.33$$

37

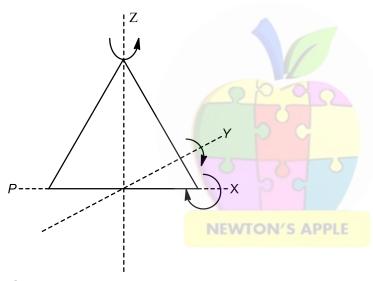
(c) 38

Mean kinetic energy per molecule $E = \frac{f}{2}kT = \frac{n}{2}kT$

39

In isothermal changes, temperature remains constant

40


Saturated water vapour do not obey gas laws

41

According to Boyle's law PV = constant

42 (c)

> As temperature requirement is not given so, the molecule of a triatomic gas has a tendency of rotating about any of three coordinate axes. So, it has 6 degrees of freedom; 3 translational and 3 rotational.

Thus,

(3 translational+3 rotational) at room temperature.

43

Ratio of specific heat for a monoatomic gas is $\frac{5}{3}$ and for diatomic gas is $\frac{7}{5}$.

Given,
$$n_1 = 1, n_2 = 3, n = 4$$

$$\therefore \frac{n}{\gamma - 1} = \frac{n_1}{\gamma_1 - 1} + \frac{n_2}{\gamma_2 - 1}$$

$$\frac{4}{\gamma - 1} = \frac{1}{\frac{5}{3} - 1} + \frac{3}{\frac{7}{5} - 1}$$

$$4 \quad 3 \quad 15 \quad 9$$

$$\Rightarrow \frac{4}{v-1} = \frac{3}{2} + \frac{15}{2} = 9$$

$$\therefore \qquad 4 = 9\gamma - 9$$

$$\Rightarrow \qquad 9\gamma = 13 \qquad \Rightarrow \gamma = \frac{13}{9}$$

Now,
$$C_V(\gamma - 1) = R$$

Now,
$$C_V(\gamma - 1) = R$$

or $C_V = \frac{R}{\gamma - 1} = \frac{8.3}{\frac{13}{9} - 1} = \frac{8.3 \times 9}{4}$

$$\Rightarrow$$
 $C_V = 18.7 \,\mathrm{J \, mol^{-1} - K^{-1}}$

$$VP^3 = \text{constant} = k \Rightarrow P = \frac{k}{V^{1/3}}$$

Also
$$PV = \mu RT \Rightarrow \frac{k}{V^{1/3}}$$
. $V = \mu RT \Rightarrow V^{2/3} = \frac{\mu RT}{k}$

Hence
$$\left(\frac{V_1}{V_2}\right)^{2/3} = \frac{T_1}{T_2} \Rightarrow \left(\frac{V}{27V}\right)^{2/3} = \frac{T}{T_2} \Rightarrow T_2 = 9T$$

$$v_{av} = \sqrt{\frac{8RT}{\pi M}} \Rightarrow T \propto M \ [\because v_{av}, R \rightarrow \text{constant}]$$

$$\Rightarrow \frac{T_{H_2}}{T_{O_2}} = \frac{M_{H_2}}{M_{O_2}} \Rightarrow \frac{T_{H_2}}{(273 + 31)} = \frac{2}{32}$$

$$\Rightarrow T_{H_2} = 19 K = -254 ^{\circ} \text{C}$$

$$\frac{V_{rms_{He}}}{V_{rms_{Ar}}} = \frac{\sqrt{\frac{3RT}{m_{He}}}}{\sqrt{\frac{3RT}{m_{Ar}}}} = \sqrt{\frac{m_{Ar}}{m_{He}}} = \sqrt{\frac{40}{4}} = \sqrt{10} \approx 3.16$$

$$n_1 C_{v1} \Delta T_1 = n_2 C_{v2} \Delta T_2$$

$$3 \qquad 5 \qquad n_1$$

$$\Rightarrow n_1 \times \frac{3}{2}R \times 10 = n_2 \times \frac{5}{2}R \times 6 \Rightarrow \frac{n_1}{n_2} = 1$$

In elastic collision kinetic energy is conserved

49 (b)

Root mean square speed

$$v_{\rm rms} \propto \frac{1}{\sqrt{\rho}}$$

$$\frac{v_{\rm rms}}{v_{\rm rms}_{2}} = \sqrt{\frac{\rho_{2}}{\rho_{1}}}$$
NEWTON'S APPLE

Given,
$$\frac{\rho_1}{\rho_2} = \frac{9}{8}$$

$$\Rightarrow \frac{v_{\text{rms}_1}}{v_{\text{rms}_2}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}$$

50

Since $c_{rms} << V_e$, hence molecules do not escape out

51

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3 \times 8.3 \times 300}{28 \times 10^{-3}}} = 517m/s$$

52 (b)

In case of given graph, V and T are related as V = aT - b, where a and b are constants.

From ideal gas equation,
$$PV = \mu RT$$

We find $P = \frac{\mu RT}{aT-b} = \frac{\mu R}{a-b/T}$

Sinec $T_2 > T_1$, therefore $P_2 < P_1$

In Vander Waal's equation $\left(P + \frac{a}{V_2}\right)(V - b) = RT$

54 **(b)**

55 **(b)**

The molecules of a gas are in a state of random motion. They continuously collide against the walls of the container. Even at ordinary temperature and pressure, the number of molecular collisions with walls is very large. During each collision, certain momentum is transferred to the walls of the container. The pressure exerted by the gas is due to continuous bombardment of gas molecules against the walls of the container. Due to this continuous bombardment, the walls of the container experience a continuous force which is equal to the total momentum imparted to the walls per second. The average force experienced per unit area of the walls container determines the pressure exerted by the gas. This should be clear from the fact that although the molecular collisions are random the pressure remains constant.

- 56 **(c)**
 - 1. The dotted line in the diagram shows that there is no derivation in the value of $\frac{pV}{nT}$ for different temperature T_1 and T_2 for increasing pressure so, this gas behaves ideally. Hence, dotted line corresponds to 'ideal' gas behavior.
 - 2. At high temperature, the derivation of the gas is less and at low temperature the derivation of gas is more. In the graph, derivation for T_2 is greater than for T_1 . Thus,

$$T_1 > T_2$$

- 3. Since, the two curves intersect at dotted line so, the value of $\frac{pV}{nT}$ at that point on the *y*-axis is same for all gases.
- 57 **(c**

$$\gamma_{\text{max}} = \frac{\frac{\mu_1 \gamma_1}{\gamma_1 - 1} + \frac{\mu_2 \gamma_2}{\gamma_2 - 1}}{\frac{\mu_1}{\gamma_1 - 1} + \frac{\mu_2}{\gamma_2 - 1}}$$

$$= \frac{\frac{1 \times \frac{5}{3}}{\left[\frac{5}{3} - 1\right]} + \frac{1 \times \frac{7}{5}}{\left[\frac{7}{5} - 1\right]}}{\left[\frac{1}{\frac{5}{2} - 1}\right] + \left[\frac{1}{\frac{7}{5} - 1}\right]} = \frac{3}{2} = 1.5$$

58 **(d)**

Oxygen being a diatomic gas possesses 5 degrees of freedom, 3 translational and 2 rotational. Argon being monoatomic has 3 translational degrees of freedom.

Total energy of the system

$$= E_{\text{oxygen}} + E_{\text{argon}}$$
$$= n_1 f_1 \left(\frac{1}{2} RT\right) + n_2 f_2 \left(\frac{1}{2} RT\right)$$

$$= 2 \times 5 \times \frac{1}{2}RT + 4 \times 3 \times \frac{1}{2}RT$$
$$= 5RT + 6RT = 11RT$$

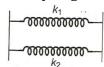
Simple Harmonic Motion

1.		-	suspended from quency of the sy		0 0	•	n oscillates with a frec he same spring	ղuency
	a) n/4		b) 4n		c) n/2	•	d) 2n	
2.	Two particl	out with per	riod 3 <i>seconds</i> a	nd 6 second	e Simple Ha		along <i>X</i> -axis with sate the velocities of the	me
		f P and Q w	then they meet is	5			D 2 2	
2	a) 1:2	c	b) 2 :1	05	c) 2:3		d) 3 :2	
3.			particle, execu			motion is		
		s the displa	cement from t	he mean po			. /-	
	a) $\propto x$		b) $\propto x^2$		c) Indep	endent of x	d) $\propto x^{1/2}$	
4.	There is a	simple per	ndulum hangin	g from the	<mark>ceiling of</mark> a	lift. When the	lift is stand still, the	e time
	period of t	he pendul	um is $T. { m If} { m the} { m r}$	esulta <mark>nt ac</mark>	celeration	becomes g/4,	then the new time	period
	of the pend	dulum is						
	a) 0.8 <i>T</i>		b) 0.2 <mark>5 <i>T</i> N</mark>	EWTON'S	c) 2 T		d) 4 T	
5.	If a body is	executing	g simple harmo	nic motion	then			
	a) At extreme positions, the total energy is zero							
	b) At equilibrium position, the total energy is in the form of potential energy							
	c) At equilibrium position, the total energy is in the form of kinetic energy							
	-	=	on, the total ene					
6.	Five identical springs are used in the following three configurations. The time periods of vertical							
	oscillations in configurations (i), (ii) and (iii) are in the ratio							
	(i)		0000000					

7. A simple pendulum has time period T. The bob is given negative charge and surface below it is given positive charge. The new time period will be

b) $2: \sqrt{2}: \frac{1}{\sqrt{2}}$ c) $\frac{1}{\sqrt{2}}: 2: 1$

a) Less than T

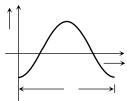

a) $1:\sqrt{2}:\frac{1}{\sqrt{2}}$

- b) Greater than T
- c) Equal to T
- d) Infinite

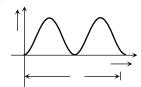
d) $2:\frac{1}{\sqrt{2}}:1$

8.	A particle of mass 200 g executes SHM. The restoring force is provided by a spring of force constant 80 N/m. The time period of oscillation is				
	a) 0.31 s	b) 0.15 s	c) 0.05 s	d) 0.02 s	
9.		ole pendulum in a lift desce	,	•	
	a) $T = 2\pi \sqrt{\frac{l}{g}}$	-	c) Zero	d) Infinite	
10.	•				
	a) $-a$	b) +a	c) ± <i>a</i>	d) $\pm a/4$	
11.		onstants k_1 and k_2 , are coand k_2 are made four tin		=	
	a) f/2	b) f/4	c) 4 <i>f</i>	d) 2 <i>f</i>	
12.	, , ,	executing S.H.M. is given by	=		
	a) 0.01 <i>s</i>	b) 0.02 s	c) 0.1 s	d) 0.2 s	
13.					
	a) $\frac{1}{2}$ ms ⁻¹	b) $\frac{1}{3}$ ms ⁻¹	c) 3 ms ⁻¹	d) 2 ms ⁻¹	
14.		constant k is cut into two puts of the shorter and longer		are in the ratio 1: 2. The	
15.	a) 1:2 The displacement x (in second) as	b) 2 : 1 metre) <mark>of a particle in si</mark>	c) 1:3 mple harmonic motion is	d) 2 : 3 related to time <i>t</i> (in	
	$x = 0.01 \cos \left(\pi t + \frac{\pi}{4} \right)$				
	The frequency of the motion will be				
	a) 0.5 Hz	b) 1.0 Hz	c) $\frac{\pi}{2}$ Hz	d) π Hz	
16.	A particle is moving in a	circle with uniform speed. I	2	,	
	a) Periodic and simple hac) A periodic	armonic	b) Periodic but no simpled) None of the above	harmonic	
17.	, ·				
	a) 2 g	b) 3 g	c) 4 g	d) g	
18.	Two simple harmonic $y_1 = 5[\sin 2\pi t + \cos 2\pi t]$	motions are represented $\sqrt{3}\cos 2\pi t$	by		
	and $y_2 = 5\sin(2\pi t)$	$+\frac{\pi}{4}$			
	The ratio of their ampli	1.			
	a) 1:1	b) 2: 1	c) 1:3	d) $\sqrt{3}$: 1	

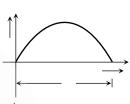
19. Two springs of force constant k_1 and k_2 are connected as shown.

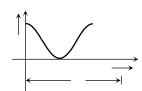


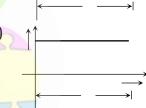
The effective spring constant k is


- a) $k_1 + k_2$

c) $k_1 k_2$


- d) $2k_1k_2$
- Acceleration A and time period T of a body in S.H.M. is given by a curve shown below. Then corresponding graph, between identic energy (K.E) and time t is correctly represented by


a)



b)

c)

The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle θ and then released. The bob will then pass through its equilibrium position with a speed v, where v equals

a)
$$\sqrt{2gl(1-\cos\theta)}$$

b)
$$\sqrt{2gl(1 + \sin \theta)}$$

d) $\sqrt{2gl(1 + \cos \theta)}$

c)
$$\sqrt{2gl(1-\sin\theta)}$$

d)
$$\sqrt{2gl(1+\cos\theta)}$$

- A particle executes harmonic motion with an angular velocity and maximum acceleration of $3.5\ rad/s$ and $7.5 \, m/s^2$ respectively. The amplitude of oscillation is
 - a) 0.28 m
- b) 0.36 m
- c) 0.53 m
- d) 0.61 m
- 23. The total energy of a particle executing SHM is 80 J. What is the potential energy when the particle is at a distance of 34 of amplitude from the mean position?
 - a) 60 J

b) 10 J

c) 40 J

d) 45 J

- 24. Mark the wrong statement
 - a) All S.H.M.'s have fixed time period
 - b) All motions having same time period are S.H.M.
 - c) In S.H.M. total energy is proportional to square of amplitude
 - d) Phase constant of S.H.M. depends upon initial conditions
- 25. What is constant in S.H.M.
 - a) Restoring force
- b) Kinetic energy
- c) Potential energy
- d) Periodic time

- 26. If a watch with a wound spring is taken on to the moon, it
 - a) Runs faster
- b) Runs slower
- c) Does not work
- d) Shown no change
- A particle has simple harmonic motion. The equation of its motion is $x = 5 \sin \left(4t \frac{\pi}{6}\right)$, where x is its 27. displacement. If the displacement of the particle is 3 units, then it velocity is

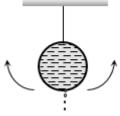
c) 20

d) 16

28.			dulum if the mass of the bo	
20	a) Halved	b) Doubled	c) Becomes eight times	d) No effect
29.	-	motions are represented	by the equations	
	$y_1 = 0.1\sin\left(100\pi t + \right)$	$\frac{\pi}{3}$) and $y_2 = 0.1 \cos \pi t$.		
			l, with respect to the velo	ocity of particle 2 is
	a) $\frac{-\pi}{6}$	b) $\frac{\pi}{3}$	c) $\frac{-\pi}{2}$	d) $\frac{\pi}{6}$
30.	A hody of mass 4 kg ha	3 ngs from a spring and os	cillates with a period 0.5	U
50.	body, the spring is shor		emates with a period 0.5	3 on the remover of the
	a) 6.3 cm	b) 0.63 cm	c) 6.25 cm	d) 6.3 cm
31.	The periodic time of a p	particle doing simple har	monic motion is 4 s. The	taken by it to go from its
	= =	ne maximum displaceme		
	a) 2s	b) 1s	c) $\frac{2}{3}$ s	$d)\frac{1}{2}s$
00			3	S
32.	The motion of a particle e time t is in second. The time		$= 0.01\sin 100p(t+0.05),$, where x is in metre and
	a) 0.2 s	b) 0.1 s	c) 0.02 s	d) 0.01 s
33.			th a time period of 16 s. A	,
	_		4 s, velocity is 4 ms ⁻¹ . Th	
	metre is			
	a) $\sqrt{2}\pi$	b) $16\sqrt{2}\pi$	$c) 24\sqrt{2}\pi$	d) $\frac{32\sqrt{2}}{-}$
				π
34.		ticle performing SHM is 12	cms ⁻² at a distance of 3 cm	n from the mean position.
	Its time period is a) 2.0 s	b) 3.14 s	c) 0.5 s	d) 1.0 s
35.				,
35. A body of mass 20 g connected to spring of constant k executes simple harmonic motion w frequency of $\left(\frac{5}{\pi}\right)$ Hz. The value of spring constant is				
	(11)	MEWICH 3	APPLE	J)
36.		b) 3 Nm ⁻¹	vs a parabolic path as show	d) 5 Nm ⁻¹
30.	-		hich graph correctly depict	
	particle as a function of ti	-	men grupn correctly depict	is the position of the
	V(x)			
	$\binom{m}{k}$			
	0 (x)			
	$\uparrow \mathbf{x}(t)$	$\int \mathbf{x}(t)$	$\uparrow \mathbf{x}(t)$	$\uparrow \mathbf{x}(t)$
	a) (b)	c)	d)
	$t \rightarrow t$	$0 \longrightarrow t$	$0 \longrightarrow t$	$0 \longrightarrow t$
			, , ,	
37.	Two particles execute SHM of the same amplitude and frequency along the same straight line. If			
	they pass one another when going in opposite directions, each time their displacement is half their amplitude, the phase difference between them is			
			π	2π
	a) $\frac{\pi}{3}$	b) $\frac{\pi}{4}$	c) $\frac{\pi}{6}$	d) $\frac{2\pi}{3}$
				-

 $38. \quad \text{The velocity of simple pendulum is maximum at} \\$

b) Half displacement


c) Mean position

a) Extremes

d) Every where

- 39. A simple pendulum has a length *l* and the mass of the bob is *m*. The bob is given a charge *q* coulomb. The pendulum is suspended between the vertical plates of a charged parallel plate capacitor. If E is the electric field strength between the plates, the time period of the pendulum is given by

- b) $2\pi \left| \frac{l}{\sqrt{g + \frac{qE}{m}}} \right|$ c) $2\pi \left| \frac{l}{\sqrt{g \frac{qE}{m}}} \right|$ d) $2\pi \left| \frac{l}{\sqrt{g^2 + \left(\frac{qE}{m}\right)^2}} \right|$
- The period of oscillation of a simple pendulum of length *l* suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination α is given by
 - a) $2\pi \sqrt{\frac{1}{g\cos\alpha}}$
- b) $2\pi \sqrt{\frac{1}{g \sin \alpha}}$
- c) $2\pi \sqrt{\frac{l}{g}}$
- d) $2\pi \sqrt{\frac{1}{g \tan \alpha}}$
- A simple pendulum is made of a body which is a hollow sphere containing mercury suspended by means of a wire. If a little mercury is drained off, the period of pendulum will

- a) Remains unchanged
- b) Increase
- c) Decrease
- d) Become erratic
- The circular motion of a particle with constant speed is
 - a) Simple harmonic but not periodic
- b) Periodic and simple harmonic
- c) Neither periodic nor simple harmonic d) Periodic but not simple harmonic
- A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy change into potential energy is
 - a) f/2

b) *f*

c) 2 f

- d) 4 f
- The average acceleration of a particle performing SHM over one complete oscillation is
 - a) $\frac{\omega^2 A}{2}$
- c) Zero
- d) $A\omega^2$
- A particle of mass 1 kg is moving in SHM with an amplitude 0.02 m and a frequency of 60 Hz. The maximum force in newton acting on the particle is
 - a) $188 \pi^2$
- b) $144\pi^2$
- c) $288\pi^2$
- d) None of these
- 46. Two springs have spring constants K_A and K_B and $K_A > K_B$. The work required to stretch them by same extension will be
 - a) More in spring A
- b) More in spring *B*
- c) Equal in both
- d) Nothing can be said

1 (c)

$$n = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \Rightarrow n \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{n_1}{n_2} = \sqrt{\frac{m_2}{m_1}}$$

$$\Rightarrow \frac{n}{n_2} = \sqrt{\frac{4m}{m}} \Rightarrow n_2 = \frac{n}{2}$$

2 **(b**)

The particle will meet at the mean position when P completes one oscillation and Q completes half an oscillation

So
$$\frac{v_P}{v_Q} = \frac{a\omega_P}{a\omega_Q} = \frac{T_Q}{T_P} = \frac{6}{3} = \frac{2}{1}$$

3 **(c**)

In simple harmonic motion when a particle displaced to a position from its mean position then its kinetic energy gets converted in potential energy. Hence, total energy of particle remains constant or the total energy in simple harmonic motion does not depend is displacement x.

4 (c)

Time period of a simple pendulum of length *l*, is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

...(i)

Where, g is acceleration due to gravity.

When $g' = \frac{g}{4}$,

New, time period is

$$T' = 2\pi \sqrt{\frac{l}{g/4}}$$

...(ii)

Dividing Eq. (ii) by Eq. (i), we get

$$\frac{T'}{T} = \sqrt{\frac{g}{g/4}} = 2$$

 \Rightarrow T' = 2T

Hence, new time period becomes twice of the original value.

5 **(c)**

At equilibrium position, potential energy of the body is zero. So, the total energy at equilibrium position is completely kinetic energy.

6 **(a**

$$T \propto \frac{1}{\sqrt{k}} \Rightarrow T_1: T_2: T_3 = \frac{1}{\sqrt{k}}: \frac{1}{\sqrt{k/2}}: \frac{1}{\sqrt{2k}} = 1: \sqrt{2}: \frac{1}{\sqrt{2}}$$

⁷ (a)

In this case time period of pendulum becomes

$$E \downarrow mg \downarrow qE$$

$$T'' = 2\pi \sqrt{\frac{l}{\left(g + \frac{qE}{m}\right)}}$$

⇒1 <

 $T = 2\pi \sqrt{\frac{m}{k}}$

$$=2\pi$$
 $\frac{0.2}{80} = 0.315$

9 **(d)**

This is the case of freely falling lift and in free fall of lift effective g for pendulum will be zero. So

$$T = 2\pi \sqrt{\frac{l}{0}} = \infty$$

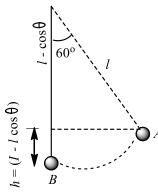
10 **(c)**

Maximum potential energy position $y = \pm a$ and maximum kinetic energy position is y = 0

11 (d)

$$f = \frac{1}{2\pi} \sqrt{\frac{k_1 + k_2}{m}}$$
and $f' = \frac{1}{2\pi} \cdot 2\sqrt{\frac{k_1 + k_2}{m}} = 2f$

12 **(b)** $\omega = \frac{2\pi}{T} = 100\pi \Rightarrow T = 0.02 s$


13 **(d**)

KE at the lowest position = $\frac{1}{2} mv^2$

$$= \frac{1}{2} m(3)^2 = \frac{9}{2} m$$

When the length makes an angle θ (= 60°) to the vertical, the bob of the pendulum will have both KE and PE. If v is the velocity of bob at this position and h is the height of the bob w.r.t. B, then total energy of the bob

$$= \frac{1}{2}mv^2 + mgh$$

But
$$h = l - l \cos \theta$$

 $= l(1 - \cos \theta)$
 $= 0.5(1 - \cos 60^{\circ}) = 0.5\left(1 - \frac{1}{2}\right) = \frac{1}{4}$
 $E = \frac{1}{2}mv^2 + m \times 10 \times \frac{1}{4}$
 $= \frac{1}{2}mv^2 + \frac{5}{2}m$

According to law of conservation of energy

$$\frac{1}{2}mv^2 + \frac{5m}{2} = \frac{9}{2}m$$

$$\Rightarrow \frac{1}{2}mv^2 = \frac{9}{2}m - \frac{5}{2}m = 2m$$

$$\therefore \qquad u = 2 \text{ ms}^{-1}$$

14 **(b)**

Let k be the force constant of the shorter part of the spring of length l/3. In a complete spring, three springs are in series each of force constant k

$$k_1 = k/2 = \frac{3k}{2}$$

$$\therefore \frac{k}{k_1} = \frac{3K}{3K/2} = 2 \text{ or } k: k_1 = 2:1$$

15 (a)

The standard equation in SHM is

$$x = a\cos(\omega t + \emptyset)$$

(i)

Where a is amplitude, ω the angular velocity and (\emptyset) the phase difference.

Also, $\omega = \frac{2\pi}{T}$ where *T* is periodic time.

So, Eq. (i) becomes

$$x = a \cos\left(\frac{2\pi t}{T} + \emptyset\right)$$

...(ii)

Given, equation is

$$x = 0.01 \cos\left(\frac{2\pi t}{2} + \frac{\pi}{4}\right)$$

...(iii)

Comparing Eq. (ii) with Eq. (iii), we get

$$\frac{2\pi t}{T} = \frac{2\pi t}{2}$$

$$\Rightarrow$$
 $T = 2s$

So, frequency $n = \frac{1}{T} = \frac{1}{2} = 0.5 \text{ Hz}$

16 **(b)**

17 **(b)**

Time period of simple pendulum is given by

$$T = 2\pi \sqrt{\frac{l}{g}}$$

...(i)

When the lift is moving up with an acceleration *a*, then time period becomes

$$T' = 2\pi \sqrt{\frac{l}{g+a}}$$

Here, $T' = \frac{T}{2}$

$$\Rightarrow \frac{T}{2} = 2\pi \sqrt{\frac{l}{g+a}}$$

...(ii)

Dividing Eq.(ii) by Eq. (i), we get

$$a = 3g$$

18 **(b)**

$$y_1 = 5[\sin 2\pi t + \sqrt{3}\cos 2\pi t]$$

$$= 10[\frac{1}{2}\sin 2\pi t + \frac{\sqrt{3}}{2}\cos 2\pi t]$$

$$= 10[\cos \frac{\pi}{3}\sin 2\pi t + \sin \frac{\pi}{3}\cos 2\pi t]$$

$$= 10[(\sin 2\pi t + \frac{\pi}{3})]$$

$$\Rightarrow A_1 = 10$$

Similarly,
$$y_2 = 5 \sin \left(2\pi t + \frac{\pi}{4}\right)$$

$$\Rightarrow$$
 $A_2 = 5$

Hence,
$$\frac{A_1}{A_2} = \frac{10}{5} = \frac{2}{1}$$

19 (a)

Effective spring constant of parallel combination

$$k_e = k_1 + k_2$$

20 **(a)**

In S.H.M. when acceleration is negative maximum or positive maximum, the velocity is zero so kinetic energy is also zero. Similarly for zero acceleration, velocity is maximum so kinetic energy is also maximum

21 **(a)**

When the bob of pendulum is brought to a position making an angle θ with the equilibrium position, then height of fall of pendulum will be, $h = l - l \cos \theta = l(1 - \cos \theta).$

Taking free fall of the

$$u = 0, a = g, g = h = l(1 - \cos \theta), v = ?$$

Now, $v^2 = u^2 + 2gh = 0 + 2gl(1 - \cos \theta)$

or
$$v = \sqrt{2gl(1 - \cos\theta)}$$

22

$$A_{\text{max}} = a\omega^2 \Rightarrow a = \frac{A_{\text{max}}}{\omega^2} = \frac{7.5}{(3.5)^2} = 0.61 \, m$$

23 (d)

$$\frac{1}{2}m\omega^2r^2 = 80J;$$

PE=
$$\frac{1}{2}m\omega^2 y^2 = \frac{1}{2}m\omega^2 \times \left(\frac{3}{4}r\right)^2$$

= $\frac{9}{16}\left(\frac{1}{2}m\omega^2 r^2\right) = \frac{9}{16} \times 80 = 45 \text{ J}$

- 24 (b)
- 25 (d)
- 26

The time period of oscillation of a spring does not | 32 (c) depend on gravity

27 **(d)**

From the given equation, a = 5 and $\omega = 4$

$$\therefore v = \omega \sqrt{a^2 - y^2} = 4\sqrt{(5)^2 - (3)^2} = 16$$

28 (d)

 $T = 2\pi \sqrt{\frac{l}{a}} \Rightarrow T \propto \sqrt{\frac{l}{a}}$, it is does not depend upon

29 (a)

Given.

$$y_1 = 0.1 \sin(100\pi t + \frac{\pi}{2})$$

$$\therefore \frac{dy_1}{dt} = v_1 = 0.1 \times 100\pi \cos\left(100\pi t + \frac{\pi}{3}\right)$$

or
$$v_1 = 10\pi \sin\left(100\pi t + \frac{\pi}{3} + \frac{\pi}{2}\right)$$

or
$$v_1 = 10\pi \sin\left(100\pi t + \frac{5\pi}{6}\right)$$

and $y_2 = 0.1 \cos \pi t$

$$\therefore \quad \frac{dy_2}{dt} = v_2 = -0.1\sin\pi t = 0.1\sin(\pi t + \pi)$$

Hence, phase difference

$$\Delta \emptyset = \emptyset_1 - \emptyset_2 = \left(100\pi t + \frac{5\pi}{6}\right) - (\pi t + \pi)$$

$$= \frac{5\pi}{6} - \pi \qquad \text{(at } t = 0)$$

$$= -\frac{\pi}{6}$$

30 (c)

Time period

$$T = 2\pi \sqrt{\frac{m}{k}}$$

mg = kx

$$T = 2\pi \sqrt{\frac{x}{g}}$$

$$(0.5)^2 = 4\pi^2 \times \sqrt{\frac{x}{10}}$$

$$\frac{(0.5)^2 \times 9.8}{4 \times 3.14 \times 3.14} = \chi$$

$$x = 0.0621 \,\mathrm{m}$$

$$x = 6.2 \text{ cm}$$

$$y = A \sin\left(\frac{2\pi}{T}\right) t$$

$$\Rightarrow \frac{A}{2} = A \sin\left(\frac{2\pi}{T}\right) t$$

$$\frac{\pi t}{2} = \frac{\pi}{6}$$

$$t = \frac{1}{3} s$$

 $x = 0.01 \sin 100\pi (t + 0.05)$

$$= 0.01 \sin(100\pi t + 5\pi)$$

∴ Angular frequency $\omega = 100\pi = \frac{2\pi}{T}$

or
$$T = \frac{2}{100} = 0.02s$$

For simple harmonic motion, $y = a \sin \omega t$

$$y = a \sin \left(\frac{2\pi}{T}\right) t$$

(at t=2 s)

$$y_1 = a \sin \left[\left(\frac{2\pi}{16} \right) \times 2 \right]$$

= $a \sin \left(\frac{\pi}{4} \right) = \frac{a}{\sqrt{2}}$

At t=4 s or after 2 s from mean position.

$$y_1 = \frac{a}{\sqrt{2}}$$
, velocity=4 ms⁻¹

$$\therefore \text{Velocity} = \omega \sqrt{a^2 - y_1^2}$$

or
$$4 = \left(\frac{2\pi}{16}\right) \sqrt{a^2 - \frac{a^2}{2}}$$

[From Eq. (i)]

or
$$4 = \frac{\pi}{8} \times \frac{a}{\sqrt{2}}$$

or
$$a = \frac{32\sqrt{2}}{\pi}$$
 m

(b)

Acceleration,
$$a = -\omega^2 y = \frac{-4\pi^2}{T^2} y$$

or $T = \left(\frac{4\pi^2 y}{a}\right)^{1/2} = 2\pi \sqrt{\frac{y}{a}}$
 $= 2 \times \frac{22}{7} \times \sqrt{\frac{3}{12}} = 3.14$

35 **(c)**

Mass (m)=20 g=0.02 kg

Frequency $(f) = \frac{5}{\pi} \text{Hz}$

Time period of a loaded spring

$$T = 2\pi \sqrt{\frac{m}{k}}$$

Frequency
$$(f) = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$
$$\frac{5}{\pi} = \frac{1}{2\pi} \sqrt{\frac{k}{0.02}}$$

- or $10 = \sqrt{\frac{k}{0.02}}$
- or $100 = \frac{k}{0.02}$
- $k = 2 \text{ Nm}^{-1}$
- 36 **(b)**

Motion given here is SHM starting from rest

37 **(d)**

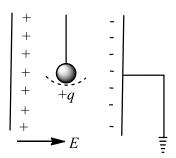
Equation of simple harmonic wave is

$$y = A\sin(\omega t + \emptyset)$$

Here, $y = \frac{A}{2}$

$$\therefore A\sin(\omega t + \emptyset) = \frac{A}{2}$$

So,
$$\delta = \omega t + \emptyset = \frac{\pi}{6}$$
 or $\frac{5\pi}{6}$


So, the phase difference of the two particles when they are crossing each other at $y = \frac{A}{2}$ in opposite directions are

$$\delta = \delta_1 - \delta_2 = \frac{5\pi}{6} - \frac{\pi}{6} = \frac{2\pi}{3}$$

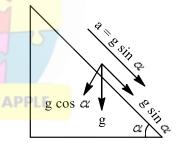
- 38 **(c)**
- 39 **(d)**

Time period of simple pendulum in air

$$T = 2\pi \sqrt{\frac{l}{g}}$$

When it is suspended between vertical plates of a charged parallel plate capacitor, then acceleration due to electric field,

$$a = \frac{qE}{m}$$


This acceleration is acting horizontally and acceleration due to gravity is acting vertically. So, effective acceleration

$$g' = \sqrt{g^2 + a^2} = \sqrt{g^2 + \left(\frac{qE}{m}\right)^2}$$
 Hence,
$$T' = 2\pi \sqrt{\frac{l}{\sqrt{g^2 + \left(\frac{qE}{m}\right)^2}}}$$

40 (a)

Time period

$$T = 2\pi \sqrt{\frac{l}{g_{\rm eff}}}$$

$$T = 2\pi \sqrt{\frac{l}{g\cos\alpha}}$$

41 **(b)**

When a little mercury is drained off, the position of $c.\,g.$ of ball falls $(w.\,r.\,t.$ fixed end) so that effective length of pendulum increases hence T increases

42 **(d)**

In a circular motion particle repeats after equal intervals of time. So particle motion on a circular path is periodic but not simple harmonic as it does not execute to and fro motion about a fixed point.

43 **(c)**

In S.H.M. frequency of K.E. and P.E. = 2 × (Frequency of oscillating particle)

44 **(c)**

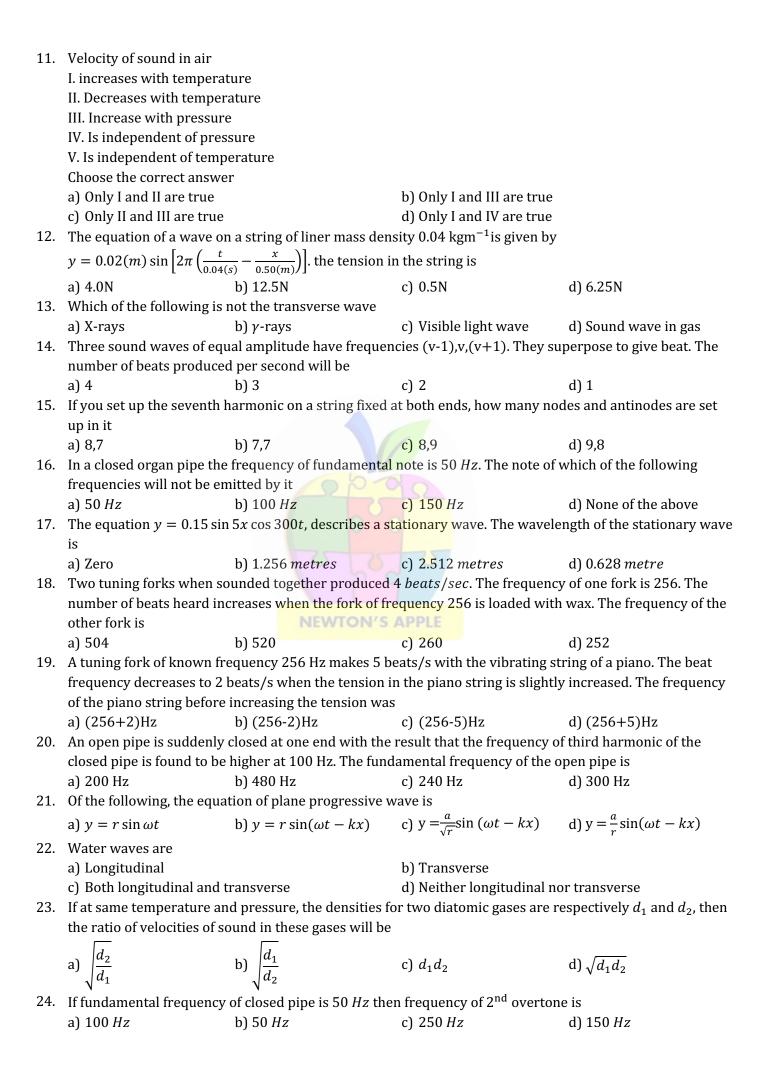
The average acceleration of a particle performing SHM over one complete oscillation is zero.

Maximum force= $m\omega^2 a = m4\pi v^2 a$

$$= 1 \times 4\pi^2 \times (60)^2 \times 0.02 = 288\pi^2$$

46 **(a)**

Work done in stretching $(W) \propto \text{Stiffness of spring}$ (i. e. k) $:: k_A > k_B \Rightarrow W_A > W_B$ [For same extension]



	N	1echanical Wa	ves			
1.	Quality of a musical note depends	on				
	a) Harmonics present	b) Ampliti	ude of the wave			
	c) Fundamental frequency	d) Velocity	y of sound in the medium			
2.	A cylindrical tube containing air is	open at both ends. If the shor	rtest length of the tube for res	onance with		
	a given fork is 2 cm, the next short	test length for res <mark>onanc</mark> e with	the same fork will be			
	a) 60 cm b) 40 c	m c) 90 cm	d) 80 cm			
3.	The fundamental frequency of a so	onameter wire is <mark>v. if</mark> its radiu	s is doubled and its tension be	comes half,		
	the material of the wire remains s	am <mark>e, the new fundamen</mark> tal fre	equency will be			
	a) V b) $\frac{v}{\sqrt{2}}$	c) $\frac{v}{2}$	d) $\frac{v}{2\sqrt{2}}$			
	V =		- 1 -			
4.	A wave travelling in stretched stri	ng is descri <mark>bed by the eq</mark> uatio	on $y = A\sin(kx - \omega t)$. The max	rimum		
	particle velocity is					
	a) $A\omega$ b) ω/k		, ,			
5.	The second overtone of an open p		rst overtone of a closed pipe o	f length 2m.		
	length of the open pipe is	NEWTON'S APPLE				
	a) 4m b) 2m	c) 8m	d) 1m			
6.	When a sound wave of wavelength		n, the maximum velocity of the	e particle is		
	equal to the velocity. The amplitude		2			
	a) λ b) $\frac{\lambda}{2}$	c) $\frac{\lambda}{2\pi}$	d) $\frac{\lambda}{4\pi}$			
7.	The displacement of a particle is g		4π			
<i>/</i> .	$x = 3\sin(5\pi t) + 4\cos(5\pi t)$	iven by				
	The amplitude of the particle is					
	a) 3 b) 4	c) 5	d) 7			
8.	-			The ratio of		
0.	Oxygen is 16 times heavier than hydrogen. Equal volumes of hydrogen and oxygen are mixed. The ratio of speed of sound in the mixture to that in hydrogen is					
	a) $\sqrt{8}$ b) $\sqrt{\frac{2}{17}}$	c) $\sqrt{\frac{1}{8}}$	d) $\frac{32}{17}$			
	$\sqrt{17}$	$\sqrt{8}$	$\sqrt{17}$			
9.	If $y = 5 \sin \left(30\pi t - \frac{\pi}{7} + 30^{\circ}\right) y \rightarrow$	$mm, t \to s, x \to m$.for given p	rogressive wave equation, pha	se difference		

a) $\pi/4$ b) π c) $\pi/3$ d) $\pi/2$ 10. An observer is moving away from source of sound of frequency 100 Hz. This speed is 33 m/s. If speed of sound is 330 m/s, then the observed frequency is a) 90 Hz b) 100 Hz c) 91 Hz d) 110 Hz

between two vibrating particle having path difference 3.5 m would be

25.	Tuning fork F_1 has a frequency of 256 Hz and it is observed to produce 6 beats/second with another tuning fork F_2 . When F_2 is loaded with wax, it still produces 6 beats/second with F_1 . The frequency of F_2 before loading was				
	a) 253 <i>Hz</i>	b) 262 <i>Hz</i>	c) 250 <i>Hz</i>	d) 259 <i>Hz</i>	
26.	The diagram below show	vs the propagation of a wav	re. Which points are in same	e phase	
	$A \qquad \qquad B \qquad C \qquad \qquad F \qquad \qquad C$	G			
	a) <i>F</i> , <i>G</i>	b) <i>C</i> and <i>E</i>	c) <i>B</i> and <i>G</i>	d) B and F	
27.		,	e length produce 2 beats/se	,	
		-	gan pipe is halved and that		
			ile vibrating in the fundame		
28	a) 2 A wave is reflected from	b) 6 a rigid support. The change	c) 8 e in phase on reflection will	d) 7 be	
20.	a) $\pi/4$	b) $\pi/2$	c) π	d) 2π	
29.	, ,	wave travelling in the x -di	rection is given by $y = 10^{-1}$	$^{4}\sin\left(600t-2x+\frac{\pi}{2}\right)$	
			ond. The speed of the wave	3	
	a) 200	b) 300	c) 600	d) 1200	
30.	•		n <mark>g fork, a b</mark> eat frequency of		
		with a tuning fork of 437 Hz	<mark>z, the beat</mark> frequency is 8 <i>H</i> z	z. The string frequency (Hz)	
	is a) 445	b) 435	c) 429	d) 448	
31.	•	,		peed of sound in oxygen at	
	100°C	NEWTON'S	APPLE		
	a) -148°C		c) −317.5°C		
32.	Two waves are represented by $y_1 = a \sin\left(\omega t + \frac{\pi}{6}\right)$ and $y_2 = a \cos \omega t$. What will be their resultant				
	amplitude				
	a) <i>a</i>	b) $\sqrt{2}a$	c) $\sqrt{3}a$	d) 2 <i>a</i>	
33.		•	g has a velocity of $10ms^{-1}$ a		
	The phase difference bet a) $\pi/8$	tween two particles of the s b) $\pi/4$	tring which are 2.5 cm apart c) $3\pi/8$	rt will be d) π/2	
34.	• •		, ,	• •	
0 11		,,	the velocity of the wave w		
25	a) $400\sqrt{2}$	b) $200\sqrt{2}$	c) 400	d) 200	
35.	= = *	f a closed organ pipe, then	resonance with the fundam	ientai, iirst and second	
	a) 1:3:5	b) 1:2:3	c) 5:3:1	1 1 1	
		•		d) $1:\frac{1}{3}:\frac{1}{5}$	
36.		-	y 325 Hz, two successive re	esonance length are	
	observed as 25.4 cm and a) 338ms^{-1}	77.4 cm respectively. The b) 328ms^{-1}	velocity of sound in air is $c) 330 \text{ms}^{-1}$	d) 320ms ⁻¹	
37.	•	,	wards a fixed end. When th	,	
571		-	om the fixed end of the stri		
	(and reflected) waves ar			- -	
	a) 5ms^{-1}	b) 10ms ⁻¹	c) 20ms ⁻¹	d) 40ms ⁻¹	

- 38. Which of the following do not require medium for transmission
 a) Cathode ray
 b) Electromagnetic wave
 c) Sound wave
 d) None of the above
 39. A tuning fork arrangement (pair) produces 4 beats/sec with one fork of frequency 2
- 39. A tuning fork arrangement (pair) produces 4 *beats/sec* with one fork of frequency 288 *Hz*. A little wax is placed on the unknown fork and it then produces 2 *beats/sec*. The frequency of the unknown fork is a) 286 *Hz* b) 292 *Hz* c) 294 *Hz* d) 288 *Hz*
- 40. Beats are produced by two waves given by $y_1 = a \sin 2000\pi t$ and $y_2 a \sin 2008\pi t$. The number of beats heard per second is

d) Eight

- a) Zero b) One c) Four
 41. "Stationary waves" are so called because in them
 - a) The particles of the medium are not disturbed at all
 - b) The particles of the medium do not execute SHM
 - c) There occurs no flow of energy along the wave
 - d) The interference effect can't be observed

1 (a)

The quality of sound depends upon the number of harmonics present. Due to different number of harmonics present in two sounds, the shape of the resultant wave is also different

2 **(b)**

As the tube is open at both ends, therefore, next shortest length for resonance $= 2 \times 20 = 40$ cm.

3 **(d)**

Frequency of sonometer wire is given by

$$v = \frac{1}{2l} \sqrt{\frac{T}{m}}$$

Where m is mass of string per unit length, and T is tension in the string.

Also, $m=\pi r^2 d$

R being radius of string per unit length, and T is tension in the string.

So,

$$v = \frac{1}{2l} \sqrt{\frac{T}{\pi r^2 d}}$$

Or

$$v \propto \frac{\sqrt{T}}{r}$$

0r

$$\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}} \times \left(\frac{r_2}{r_1}\right)$$

Given,
$$r_2 = 2r_1$$
, $T_2 = \frac{T_1}{2}$, $v_1 = v$

Hence,

$$\frac{v}{v_2} = \sqrt{2} \times 2$$

0r

$$v_2 = \frac{v}{2\sqrt{2}}$$

4 (a)

Here, $y = A \sin(kx - \omega t)$

$$\frac{dy}{dt} = A\cos(kx - \omega t) \times (-\omega)$$

$$\left(\frac{dy}{dt}\right)_{\text{max}} = A(-1)(-\omega) = A\omega$$

5 **(a)**

Second overtone of open pipe of length \boldsymbol{l} is

$$v_0 = \frac{v}{2I} \dots \dots (i)$$

First overtone of a close pipe is

$$v_c = \frac{v}{4l} = \frac{v}{4 \times 2} \dots (ii)$$

Equating Eqs. (i) and (ii), we get

$$\frac{v}{2l} = \frac{v}{8} \Longrightarrow l = 4m$$

6 **(c**

Given,
$$v_{\text{max}} = v$$

$$\Rightarrow a\omega = v$$

$$\Rightarrow a \times 2\pi v = v\lambda \ or \ a = \frac{\lambda}{2\pi}$$

(c)

For the given super imposing waves

$$a_1 = 3$$
, $a_2 = 4$ and phase difference $\phi = \frac{\pi}{2}$

$$\Rightarrow A = \sqrt{a_1^2 + a_2^2 + 2a_1a_2 \cos \pi/2} = \sqrt{(3)^2 + (4)^4}$$

8 **(b)**

NEWTON'

Let one mole of each gas has same volumes as V. when they are mixed, then density of mixture is

$$\rho_{mixture} = \frac{mass\ of\ O_2 + mass\ of\ H_2}{volume\ of\ O_2 + volume\ of\ H_2}$$

$$=\frac{3Z+Z}{V+V}$$

$$=\frac{34}{2V}=\frac{17}{V}$$

$$\begin{array}{ccc}
 & 2V & V \\
\text{Also,} & \rho_{H_2} = \frac{2}{V}
\end{array}$$

Now, velocity
$$v = \left(\frac{\gamma p}{\rho}\right)^{1/2}$$

Or

$$v \propto \frac{1}{\sqrt{\rho}}$$

$$\therefore \frac{v_{mixture}}{V_{H_2}} = \sqrt{\left(\frac{\rho_{H_2}}{\rho_{mixture}}\right)}$$

$$=\sqrt{\left(\frac{2/v}{17/v}\right)}=\sqrt{\left(\frac{2}{17}\right)}$$

9 **(d)**

Given,

$$y = 5 \sin \left(30\pi t - \frac{\pi}{7}x + 30^{\circ}\right) \dots (i)$$

Now.

$$y = a \sin\left(\frac{2\pi t}{T} - \frac{2\pi x}{\lambda} + \phi\right) \dots (ii)$$

On comparing Eqs. (i) and (ii)

$$\frac{2\pi x}{\lambda} = \frac{\pi x}{7}$$

$$\Rightarrow \lambda = 14m$$

We know that relation between phase difference and path difference

$$\Delta \phi = \frac{2\pi}{\lambda} \times \Delta x = \frac{2\pi}{14} \times 3.5$$

$$\Rightarrow \Delta \phi = \frac{\pi}{2}$$

10 (a)

$$n' = n\left(\frac{v - v_0}{v}\right) = \left(\frac{330 - 33}{330}\right) \times 100 = 90 \text{ Hz}$$

11 (d)

Speed of sound $v \propto \sqrt{T}$ and it is independent of pressure

12 **(d)**

$$T = \mu v^2 = \mu \frac{\omega^2}{k^2} = 0.04 \frac{\left(\frac{2\pi}{0.004}\right)^2}{\left(\frac{2\pi}{0.50}\right)^2} = 6.25N$$

13 **(d)**

14 **(c**)

Maximum number of beats =v+1-(v-1)=2

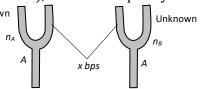
15 **(a**)

String will vibrate in 7 loops so it will have 8 nodes 7 antinodes.

Number of harmonics = Number of loops = Number of antinodes \Rightarrow Number of antinodes = 7 Hence number of nodes = Number of antinodes + 1 = 7 + 1 = 8

16 **(b)**

Only odd harmonics are present


17 **(b)**

On comparing the given equation with standard equation

$$\frac{2\pi}{\lambda} = 5 \Rightarrow \lambda = \frac{6.28}{5} = 1.256m$$

18 @

Suppose two tuning forks are named A and B with frequencies $n_A = 256 \, Hz$ (known), $n_B = ?$ (unknown), and beat frequency $x = 4 \, bps$.

Frequency of unknown tuning fork may be $n_B = 256 + 4 = 260$ Hz and $n_B = 256 - 4 = 252$ Hz

It is given that on sounding waxed fork A (fork of frequency 256 Hz) and fork B, number of beats (beat frequency) increases. It means that with decrease in frequency of A, the difference in new frequency of A and the frequency of B has increased. This is possible only when the frequency of A while decreasing is moving away from the frequency of B.

This is possible only if $n_B = 260 \ Hz$.

Alternate method: It is given $n_A = 256 Hz$, $n_B = ?$ And x = 4 bps

Also after loading A ($i.e.n_A \downarrow$), beat frequency (i.e.x) increases (\uparrow).

Apply these informations in two possibilities to known the frequency of unknown tuning fork.

$$n_A \downarrow -n_B = x$$
 ...(i)
 $n_B - n_A \downarrow = x \uparrow$...(ii)

It is obvious that equation (i) is wrong (ii) is

$$n_B = n_A + x = 256 + 4 = 260 Hz$$

19 ©

 $v_1 = 256 \, \text{Hz}$

For tuning for $v_1 - v_1 = \pm 5$,

 v_2 = frequency of piano

$$v_2 = (256 + 5)$$
Hz or $(256 - 5)$ Hz

When tension is increased, the bear frequency decreases to 2 beats/s.

If we assume that the frequency of piano string is 261 Hz, then on increasing tension, frequency, more than 261 Hz. But it is given that beat frequency decreases to 2, therefore, 261 is not possible.

Hence, 251 Hz i.e., 256-5 was the frequency of piano string before increasing tension.

20 (a)

Frequency of third harmonic of closed pipe

$$n_1 = \frac{3v}{4l}$$

Fundamental frequency of open pipe

$$n_2 = \frac{2}{2l}$$

As
$$n_1 - n_2 = 100$$

$$\frac{v}{4l} = 100$$

$$\therefore \frac{v}{2l} = 200 \text{ Hz}$$

21 **(b)**

The position f such a wave changes in two dimensional plane with time. Therefore, (b) represents the correct equation.

22 ©

Water waves are transverse as well as longitudinal in nature

23 **(a)**

Speed of sound $v = \sqrt{\frac{\gamma P}{d}} \Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{d_2}{d_1}} \left[\because P - \frac{v_2}{d_1} \right]$

constant]

24 ©

Frequency of 2^{nd} overtone $n_3 = 5n_1 = 5 \times 50 = 250$ Hz

25 **(b)**

 $n_A = \text{Known frequency} = 256 \, Hz, n_B = ?$ $x = 6 \, bps$, which remains the same after loading. Unknown tuning fork F_2 is loaded so $n_B \downarrow$ Hence $n_A - n_B \downarrow = x \rightarrow \text{Wrong ...(i)}$ $n_B \downarrow -n_A = x \rightarrow \text{...(ii)}$ $\Rightarrow n_B = n_A + x = 256 + 6 = 262 \, Hz$

26 **(d**)

Points B and F are in same phase as they are λ distance apart

27 **(d)**

Given, $f_0 - f_c = 2$... (i)

Frequency of fundamental mode for a closed organ pipe,

$$f_c = \frac{v}{4L_c}$$

Similarly frequency of fundamental mode an open orgen pipe,

$$f_0 = \frac{v}{2L_0}$$

Given $L_c = L_0$

$$\Rightarrow f_0 = 2f_c$$
 ... (ii)

From Eqs. (i) and (ii), we get

$$f_0 = 4Hz$$

And $f_c = 2Hz$

When the length of the open pipe is halved, its frequency of fundamental mode is

$$f_0' = \frac{v}{2\left[\frac{L_0}{2}\right]}$$

$$= 2f_0 = 2 \times 4Hz = 8Hz$$

When the length of the closed pipe is doubled, its frequency of fundamental mode is

$$f_0' = \frac{v}{4(2L_c)}$$

$$=\frac{1}{2}f_c=\frac{1}{2}\times 2=1Hz$$

Hence, number of beats produced per second is $f'_0 = f' = 8 - 1 = 7$

28 **(c)**

After reflection from rigid support, a wave suffers a phase change of $\boldsymbol{\pi}$

29 **(b)**

$$v = \frac{\omega}{k} = \frac{600}{2} = 300 \text{ms}^{-2}$$

30 (a)

Frequency of string = 440 ± 5

As frequency of tuning fork decreases beat frequency also increases, therefore, frequency of string = 445 Hz

31 (d)

Speed of sound in gases is $v = \sqrt{\frac{\gamma_{RT}}{M}} \Rightarrow T \propto M$

(Because v, γ -constant). Hence $\frac{T_{H_2}}{T_{O_2}} = \frac{M_{H_2}}{M_{O_2}}$

$$\Rightarrow \frac{T_{H_2}}{(273 + 100)} = \frac{2}{32} \Rightarrow T_{H_2} = 23.2K = -249.7^{\circ}C$$

32 **(c)**

$$A = \sqrt{(a_1^2 + a_2^2 + 2a_1a_2\cos\phi)}$$

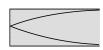
Putting $a_1 = a_2 = a$ and $\phi = \frac{\pi}{3}$, we get $A = \sqrt{3}a$

33 (d)

$$v = n\lambda \Rightarrow \lambda = 10 cm$$

Phase difference = $\frac{2\pi}{\lambda}$ × Path difference = $\frac{2\pi}{\lambda}$ × 2.5 = $\frac{\pi}{\lambda}$

$$\frac{2\pi}{10} \times 2.5 = \frac{\pi}{2}$$


34 **(d)**

Comparing with standard wave equation $v = a \sin^{2\pi} (xt - x) \text{ we get } n = 200 \text{ m/s}$

$$y = a \sin \frac{2\pi}{\lambda} (vt - x)$$
, we get, $v = 200 \text{ m/s}$

35 **(d)**

As is clear from figure

 $l = \lambda_1/4$

$$l = 3 \lambda_3 / 4$$

$$l = \frac{\lambda_1}{4}$$
 , $\lambda_2 = 4l$

$$l = \frac{3\lambda_2}{4}, \lambda_2 = \frac{4l}{3}$$

$$l = \frac{5\lambda_3}{4}$$
, $\lambda_3 = \frac{4l}{5}$

$$\lambda_1: \lambda_2: \lambda_3 = 1: \frac{1}{3}: \frac{1}{5}$$

36 **(a)**

$$v = 2n(l_2 - l_1) = 2 \times 325(77.4 - 25.4)$$
 cms⁻¹

2nd overtone

 $l = 5\lambda_3/4$

$$= \frac{650 \times 52}{100} \text{ ms}^{-1} = 338 \text{ ms}^{-1}$$

37 **(c)**

As fixed end is a node, therefore, distance between two consecutive nodes $=\frac{\lambda}{2}=10$ cm

$$\lambda = 20 \ cm = 0.2 \ m$$

As
$$v = v\lambda$$

$$v = 100 \times 0.2 = 20 \text{ ms}^{-1}$$

38 **(b)**

EM waves do not require medium for their propagation

39 **(b)**

 n_A = Known frequency = 288 *cps*, n_B = ? x = 4 *bps*, which is decreasing (from 4 to 2) after loading $i.e.x \downarrow$

Unknown fork is loaded so $n_B \downarrow$ Hence $n_A - n_B \downarrow = x \downarrow \rightarrow$ Wrong $n_B \downarrow -n_A \downarrow = x \downarrow \rightarrow$ Correct

$$\Rightarrow n_B = n_A + x = 288 + 4 = 292 \, Hz$$

40 (c)

Number of beats per second= $n_1 \sim n_2$

$$\omega_1 = 200\pi = 2\pi v_1$$

$$\Rightarrow n_1 = 1000$$

$$\frac{\text{And }\omega_2 = 2008\pi = 2\pi n_2}{\text{And }\omega_2}$$

$$\Rightarrow n_2 = 1004$$

Number of beats heard per second

41 (c)

NEWTON'